本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12381 | 2025-05-02 |
Usefulness of Artificial Intelligence in Traumatic Brain Injury: A Bibliometric Analysis and Mini-review
2024-08, World neurosurgery
IF:1.9Q2
DOI:10.1016/j.wneu.2024.05.065
PMID:38759786
|
综述 | 本文通过文献计量分析和迷你综述,探讨了人工智能在创伤性脑损伤(TBI)中的主要应用 | 结合文献计量分析和迷你综述,全面评估了人工智能在TBI领域的研究进展和应用潜力 | 主要基于Scopus数据库的文献,可能未涵盖所有相关研究 | 评估人工智能在创伤性脑损伤领域的应用和研究趋势 | 创伤性脑损伤(TBI)相关的科学出版物 | 人工智能 | 创伤性脑损伤 | 文献计量分析、知识图谱分析 | NA | 文献数据 | 495篇科学出版物(2000-2023年) | NA | NA | NA | NA |
12382 | 2025-10-07 |
Semiautomatic Assessment of Facet Tropism From Lumbar Spine MRI Using Deep Learning: A Northern Finland Birth Cohort Study
2024-May-01, Spine
IF:2.6Q1
DOI:10.1097/BRS.0000000000004909
PMID:38105615
|
研究论文 | 本研究开发了一种基于深度学习的半自动框架,用于从腰椎MRI测量小关节角度并研究小关节取向异常 | 首次在大型芬兰出生队列中应用深度学习自动测量小关节角度并分析小关节取向异常 | 研究为回顾性横断面设计,模型仅在430名参与者的MRI图像上训练 | 开发半自动测量小关节角度的深度学习框架并研究人群中小关节取向异常的患病率 | NFBC1966芬兰出生队列中的1288名参与者的腰椎MRI图像 | 数字病理 | 脊柱疾病 | T2加权轴向磁共振成像 | 深度学习模型 | 医学影像 | 训练集430人,总队列1288人,评估集60人 | NA | NA | Dice分数, 交并比 | NA |
12383 | 2025-10-07 |
A New Deep Learning Algorithm for Detecting Spinal Metastases on Computed Tomography Images
2024-Mar-15, Spine
IF:2.6Q1
DOI:10.1097/BRS.0000000000004889
PMID:38084012
|
研究论文 | 开发了一种基于深度学习的新型计算机辅助检测模型,用于自动检测胸腰椎区域的溶骨性骨转移病灶 | 提出了一种新的深度学习算法,专门针对常规CT扫描中的胸腰椎溶骨性骨转移病灶检测 | 准确性仍需进一步提高 | 自动检测胸腰椎区域的溶骨性骨转移病灶,改善癌症患者生活质量 | 胸腰椎区域的溶骨性骨转移病灶 | 计算机视觉 | 骨转移癌 | 计算机断层扫描(CT) | 深度学习 | CT图像 | 263份阳性CT扫描(含骨转移病灶)和172份阴性CT扫描(无骨转移),测试集包含20份阳性和20份阴性CT扫描 | NA | NA | 敏感度, 精确率, F1分数, 特异性 | NA |
12384 | 2025-05-02 |
Inflamed immune phenotype predicts favorable clinical outcomes of immune checkpoint inhibitor therapy across multiple cancer types
2024-02-14, Journal for immunotherapy of cancer
IF:10.3Q1
DOI:10.1136/jitc-2023-008339
PMID:38355279
|
研究论文 | 本研究探讨了基于AI的免疫表型在预测多种实体瘤类型中免疫检查点抑制剂治疗临床结果的能力 | 利用深度学习模型Lunit SCOPE IO客观且可重复地定义炎症免疫表型(IIP),并验证其作为跨多种肿瘤类型的免疫检查点抑制剂治疗反应的生物标志物 | 微卫星不稳定/错配修复缺陷亚组的IIP未能预测有利的无进展生存期 | 评估AI定义的IIP与免疫检查点抑制剂治疗临床结果之间的相关性 | 1,806名接受免疫检查点抑制剂治疗的患者,涵盖超过27种实体瘤类型 | 数字病理学 | 多种癌症 | 深度学习 | Lunit SCOPE IO | 图像 | 1,806名患者 | NA | NA | NA | NA |
12385 | 2025-05-02 |
Advanced computational tools, artificial intelligence and machine-learning approaches in gut microbiota and biomarker identification
2024, Frontiers in medical technology
IF:2.7Q3
DOI:10.3389/fmedt.2024.1434799
PMID:40303946
|
综述 | 本文综述了先进计算工具、人工智能和机器学习方法在肠道微生物群和生物标志物识别中的应用 | 整合多组学数据和先进AI技术,探索微生物组与宿主健康的复杂关系,推动个性化治疗策略的发展 | 未提及具体技术实施细节或临床验证结果 | 探索计算工具和AI在肠道微生物组研究中的应用,以识别疾病诊断和治疗的生物标志物 | 肠道微生物群及其与宿主健康的相互作用 | 机器学习 | NA | 多组学数据整合(宏基因组学、宏蛋白质组学、代谢组学) | 深度学习、基于网络的方法 | 多组学数据 | NA | NA | NA | NA | NA |
12386 | 2025-10-07 |
Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma
2023-12-14, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43749-3
PMID:38092727
|
研究论文 | 本研究利用深度学习对组合性肝细胞-胆管癌进行表型重分类 | 首次使用深度学习模型对cHCC-CCA肿瘤进行重新分类,并将预测结果与临床结局、基因改变和空间基因表达谱相关联 | 研究针对罕见双表型癌症,样本量相对有限 | 改善组合性肝细胞-胆管癌的诊断分类和治疗决策 | 405例cHCC-CCA患者及其肿瘤样本 | 数字病理学 | 肝癌 | 深度学习,原位空间基因表达分析 | 深度学习模型 | 病理图像,基因表达数据 | 405例cHCC-CCA患者 | NA | NA | 诊断准确性 | NA |
12387 | 2025-10-07 |
Automating General Movements Assessment with quantitative deep learning to facilitate early screening of cerebral palsy
2023-12-14, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-44141-x
PMID:38097602
|
研究论文 | 开发基于深度学习的运动评估模型,用于自动化评估婴儿全身运动以早期筛查脑瘫 | 首次将深度学习与婴儿视频特征结合实现全身运动评估的自动化,并提出定量GMA方法 | 需要专业视频数据且依赖专家标注进行训练 | 开发自动化工具促进脑瘫早期筛查 | 婴儿全身运动视频数据 | 计算机视觉 | 脑瘫 | 视频分析 | 深度学习 | 视频 | 未明确说明 | NA | NA | AUC | NA |
12388 | 2025-10-07 |
Single-cell spatial metabolomics with cell-type specific protein profiling for tissue systems biology
2023-12-13, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43917-5
PMID:38086839
|
研究论文 | 提出单细胞空间代谢组学框架scSpaMet,实现人类组织中单个免疫细胞和癌细胞的蛋白质-代谢物联合分析 | 首次将非靶向空间代谢组学与靶向多重蛋白质成像整合到同一流程中,实现单细胞水平的空间代谢-蛋白质联合分析 | 仅使用男性人类组织样本,样本类型和数量有限 | 开发用于组织系统生物学的单细胞空间代谢组学分析工具 | 人类肺癌、扁桃体和子宫内膜组织中的单个免疫细胞和癌细胞 | 数字病理学 | 肺癌 | 空间代谢组学, 多重蛋白质成像 | 深度学习 | 空间代谢组数据, 蛋白质成像数据 | 肺癌组织19507个单细胞, 扁桃体组织31156个单细胞, 子宫内膜组织8215个单细胞 | NA | 联合嵌入模型 | NA | NA |
12389 | 2025-10-07 |
Deep learning of cell spatial organizations identifies clinically relevant insights in tissue images
2023-12-11, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43172-8
PMID:38081823
|
研究论文 | 开发基于细胞空间组织的图卷积网络Ceograph,从病理图像中识别与临床结果相关的细胞空间组织特征 | 首次提出基于细胞空间组织的图卷积网络方法,能够评估个体空间相互作用并识别关键的临床相关特征 | 方法在特定疾病类型中验证,需要进一步在其他疾病和更大样本中验证通用性 | 开发能够从组织图像中识别临床相关细胞空间组织特征的深度学习方法 | 口腔潜在恶性疾病患者和肺癌患者的组织病理图像 | 数字病理 | 口腔癌,肺癌 | 组织成像技术 | 图卷积网络 | 病理图像 | NA | NA | Ceograph | 临床结果预测准确性 | NA |
12390 | 2025-10-07 |
DeepRTAlign: toward accurate retention time alignment for large cohort mass spectrometry data analysis
2023-12-11, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-023-43909-5
PMID:38081814
|
研究论文 | 开发基于深度学习的保留时间对齐工具DeepRTAlign,用于大规模队列液相色谱-质谱数据分析 | 能够同时处理单调和非单调保留时间偏移,相比现有方法具有更好的性能表现 | NA | 解决大规模队列LC-MS研究中保留时间对齐的瓶颈问题 | 蛋白质组学和代谢组学数据 | 机器学习 | 肝细胞癌 | 液相色谱-质谱联用技术 | 深度学习 | 质谱数据 | 多个真实世界和模拟数据集 | NA | NA | 识别灵敏度,定量准确性 | NA |
12391 | 2025-10-07 |
The text-package: An R-package for analyzing and visualizing human language using natural language processing and transformers
2023-Dec, Psychological methods
IF:7.6Q1
DOI:10.1037/met0000542
PMID:37126041
|
研究论文 | 介绍了一个用于分析和可视化人类语言的R软件包,该软件包整合了自然语言处理和Transformer技术 | 将最先进的自然语言处理和深度学习技术打包成心理学研究者易于使用的工具,专门针对人类层面分析优化 | NA | 为心理学和社会科学研究人员提供易于使用的文本分析工具 | 人类语言文本数据 | 自然语言处理 | NA | 自然语言处理,深度学习 | Transformer | 文本 | NA | R | Transformer | NA | NA |
12392 | 2025-10-07 |
Deep Learning of Cell Spatial Organizations Identifies Clinically Relevant Insights in Tissue Images
2023-Jul-04, Research square
DOI:10.21203/rs.3.rs-2928838/v1
PMID:37461694
|
研究论文 | 提出基于细胞空间组织的图卷积网络Ceograph,通过分析病理图像中的细胞空间特征预测临床结果 | 开发了首个基于细胞空间组织的图卷积网络,能够量化单个细胞间的空间相互作用并识别与临床结果相关的关键特征 | NA | 开发能够从组织图像中识别具有临床意义的细胞空间组织特征的计算方法 | 口腔潜在恶性疾病患者和肺癌患者的组织病理图像 | 数字病理 | 口腔癌,肺癌 | 组织成像技术 | 图卷积网络 | 病理图像 | NA | NA | Ceograph | 临床结果预测准确性 | NA |
12393 | 2025-10-07 |
External Validation of SpineNet, an Open-Source Deep Learning Model for Grading Lumbar Disk Degeneration MRI Features, Using the Northern Finland Birth Cohort 1966
2023-Apr-01, Spine
IF:2.6Q1
DOI:10.1097/BRS.0000000000004572
PMID:36728678
|
研究论文 | 本研究使用北芬兰1966出生队列数据对开源深度学习模型SpineNet进行腰椎间盘退变MRI特征分级的外部验证 | 首次在地理和时间上与训练数据集分离的外部数据集上验证SpineNet模型对腰椎间盘退变分级的泛化能力 | 研究为回顾性观察设计,仅使用单一队列数据进行验证 | 外部验证深度学习模型SpineNet在腰椎间盘退变MRI特征分级中的性能 | 北芬兰1966出生队列的1331名参与者的腰椎MRI数据 | 计算机视觉 | 腰椎间盘退变疾病 | 磁共振成像 | 深度学习图像分类模型 | T2加权矢状位腰椎MRI序列图像 | 1331名NFBC1966队列参与者 | NA | SpineNet | 平衡准确度, Lin一致性相关系数, Cohen κ系数 | NA |
12394 | 2025-05-02 |
International Importation Risk Estimation of SARS-CoV-2 Omicron Variant with Incomplete Mobility Data
2023, Transboundary and emerging diseases
IF:3.5Q1
DOI:10.1155/2023/5046932
PMID:40303718
|
research paper | 开发了一个基于深度神经网络的模型,用于评估Omicron BQ.1从西非传入其他国家的风险 | 利用不完全的人口流动数据,首次应用深度神经网络模型估计病毒输入风险 | 依赖不完全的人口流动数据,可能影响模型准确性 | 评估Omicron BQ.1从西非传入其他国家的风险 | Omicron BQ.1病毒及其传播风险 | machine learning | COVID-19 | deep neural networks | DNN | population mobility data | 西非到其他非非洲国家的人口流动数据 | NA | NA | NA | NA |
12395 | 2025-10-07 |
Applying Deep Learning to Establish a Total Hip Arthroplasty Radiography Registry: A Stepwise Approach
2022-09-21, The Journal of bone and joint surgery. American volume
DOI:10.2106/JBJS.21.01229
PMID:35866648
|
研究论文 | 本研究开发了基于深度学习的自动化流程,用于建立全髋关节置换术影像注册表 | 采用分步式深度学习方法自动筛选和标注髋关节影像,实现了高效准确的影像注册表构建 | 研究为单中心回顾性研究,证据等级为IV级 | 建立自动化的全髋关节置换术影像注册表,实现影像的自动筛选和角度测量 | 20,378名接受初次或翻修全髋关节置换术患者的846,988份髋部和骨盆X光影像 | 计算机视觉 | 骨科疾病 | X光摄影 | CNN, 目标检测 | 医学影像 | 846,988份DICOM文件,来自20,378名患者 | NA | EfficientNetB3, YOLOv5 | 准确率, 精确率, 召回率, F1分数 | NA |
12396 | 2025-10-07 |
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
2018-04-03, Cell reports
IF:7.5Q1
DOI:10.1016/j.celrep.2018.03.086
PMID:29617659
|
研究论文 | 本研究利用深度学习技术分析TCGA样本的H&E染色病理图像,绘制肿瘤浸润淋巴细胞空间分布图并探索其与分子特征的相关性 | 首次通过计算染色方法从H&E图像中提取肿瘤浸润淋巴细胞的空间组织模式,并将其与基因组数据和临床预后相关联 | 研究仅基于13种TCGA肿瘤类型,样本来源和图像质量可能存在异质性 | 探索肿瘤微环境中淋巴细胞空间分布模式与分子特征及临床预后的关联 | TCGA数据库中的13种肿瘤类型的H&E染色病理图像 | 数字病理学 | 多种癌症类型 | H&E染色,深度学习图像分析 | CNN | 病理图像 | 13种TCGA肿瘤类型的多样本集合 | NA | 卷积神经网络 | NA | NA |
12397 | 2025-10-07 |
PLPTP: A Motif-based Interpretable Deep Learning Framework Based on Protein Language Models for Peptide Toxicity Prediction
2025-Jun-15, Journal of molecular biology
IF:4.7Q1
DOI:10.1016/j.jmb.2025.169115
PMID:40158838
|
研究论文 | 提出一种基于蛋白质语言模型的深度学习框架PLPTP,用于肽毒性预测 | 整合ESM2、BiLSTM和DNN模型,并结合基序分析增强模型可解释性,使用Focal Loss处理类别不平衡问题 | NA | 提高肽毒性预测的准确性,促进更安全的肽类药物设计 | 肽序列 | 生物信息学 | NA | 深度学习 | ESM2, BiLSTM, DNN | 肽序列数据 | NA | NA | ESM2, BiLSTM, 深度神经网络 | 多个评估指标 | NA |
12398 | 2025-10-07 |
AI-Driven Microscopy: Cutting-Edge Approach for Breast Tissue Prognosis Using Microscopic Images
2025-May, Microscopy research and technique
IF:2.0Q3
DOI:10.1002/jemt.24788
PMID:39748498
|
研究论文 | 提出一种基于深度学习的AI驱动显微镜方法,用于乳腺组织微观图像的预后分析 | 将挤压激励模块和扩张密集卷积块集成到密集卷积网络中,结合注意力机制和多尺度特征提取技术 | 未明确说明数据集的具体规模和多样性限制 | 开发快速精确的临床诊断、病程分析和预后预测的计算机辅助分析方法 | 乳腺组织微观图像中的良恶性病变和八种乳腺亚型 | 数字病理学 | 乳腺癌 | 显微镜成像 | CNN | 图像 | NA | TensorFlow, PyTorch | DenseNet, VGGNet-19, ResNet152V2, EfficientNetV2-B1, DenseNet-121 | 准确率 | NA |
12399 | 2025-10-07 |
Highly-Efficient Differentiation of Reactive Lymphocytes in Peripheral Blood Using Multi-Object Detection Network With Large Kernels
2025-May, Microscopy research and technique
IF:2.0Q3
DOI:10.1002/jemt.24775
PMID:39760201
|
研究论文 | 提出一种高效的多目标检测网络用于外周血中反应性淋巴细胞的自动检测 | 引入空间到深度卷积(SPD-Conv)、动态大核注意力机制(DLKA)和渐进特征金字塔网络(AFPM)来提升密集小目标检测性能 | NA | 开发计算机辅助诊断系统用于反应性淋巴细胞检测 | 外周血中的反应性淋巴细胞和其他白细胞 | 计算机视觉 | 病毒感染相关疾病 | 深度学习 | 多目标检测网络 | 医学图像 | NA | NA | SPD-Conv, DLKA, AFPN | mAP50 | NA |
12400 | 2025-10-07 |
Enhancing panoramic dental imaging with AI-driven arch surface fitting: achieving improved clarity and accuracy through an optimal reconstruction zone
2025-05-01, Dento maxillo facial radiology
DOI:10.1093/dmfr/twaf006
PMID:39832267
|
研究论文 | 开发基于AI的自动化全景牙科成像方法,通过3D U-Net生成牙弓曲面并定义最优重建区域 | 提出使用3D U-Net深度学习模型生成牙弓曲面并定义最优3D重建区域的新方法 | 需要进一步测试在不同牙颌面结构患者中的鲁棒性能 | 开发自动生成更清晰、对齐良好的全景牙科视图的方法 | 312名患者的锥形束CT扫描数据 | 数字病理 | 牙科疾病 | 锥形束CT扫描 | 3D U-Net | 医学影像 | 312名患者(平均年龄40岁,41.3%男性,58.7%女性) | NA | 3D U-Net | 牙根与牙槽骨对比度,交并比,像素值 | NA |