本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12421 | 2025-05-01 |
Analyzing resuscitation conference content through the lens of the chain of survival
2025-May, Resuscitation plus
IF:2.1Q2
DOI:10.1016/j.resplu.2025.100951
PMID:40297165
|
研究论文 | 通过生存链框架分析复苏会议的内容 | 首次使用生存链框架对复苏会议摘要进行系统分析,并考察了人工智能和机器学习在数据分析中的应用 | 仅分析了两大会议的数据,可能无法代表所有复苏科学会议的情况 | 了解复苏科学会议中讨论的主题分布及其与生存链框架的对应关系 | 复苏会议摘要 | 医学信息学 | 心血管疾病 | 机器学习 | NA | 文本 | Resuscitation 2024的54篇摘要和Resuscitation Science Symposium 2024的47篇摘要 | NA | NA | NA | NA |
12422 | 2025-10-07 |
Determinants of ascending aortic morphology: cross-sectional deep learning-based analysis on 25 073 non-contrast-enhanced NAKO MRI studies
2025-Apr-30, European heart journal. Cardiovascular Imaging
DOI:10.1093/ehjci/jeaf081
PMID:40052574
|
研究论文 | 基于深度学习自动分析25073例非对比增强MRI数据,研究升主动脉形态的决定因素 | 首次在大规模流行病学队列中应用深度学习自动分割胸主动脉,并结合因果分析揭示升主动脉直径的决定因素 | 研究为横断面设计,无法确定因果关系的时间顺序,且仅基于德国人群数据 | 探究升主动脉形态的决定因素及其与心血管健康的关系 | 25073名德国国家队列(NAKO)参与者的非对比增强磁共振血管成像数据 | 医学影像分析 | 心血管疾病 | 非对比增强磁共振血管成像(NC-MRA) | 深度学习 | 3D MRI图像 | 25073例NC-MRA研究 | NA | NA | 决定系数(r²), P值 | NA |
12423 | 2025-10-07 |
Hyperspectral Imaging and Deep Learning for Quality and Safety Inspection of Fruits and Vegetables: A Review
2025-Apr-30, Journal of agricultural and food chemistry
IF:5.7Q1
DOI:10.1021/acs.jafc.4c11492
PMID:40237548
|
综述 | 本文综述了高光谱成像技术结合深度学习方法在果蔬质量安全检测中的应用现状与前景 | 系统整合高光谱成像与深度学习技术在果蔬质量检测中的最新应用,提出未来研究方向包括成本优化、个性化特征提取和模型泛化能力提升 | NA | 探讨高光谱成像与深度学习技术在果蔬质量安全检测中的应用潜力与发展方向 | 水果和蔬菜的质量安全检测 | 计算机视觉 | NA | 高光谱成像技术 | 深度学习 | 高光谱图像 | NA | NA | NA | 检测精度, 检测效率 | NA |
12424 | 2025-05-01 |
Engaging the Community: CASP Special Interest Groups
2025-Apr-30, Proteins
IF:3.2Q2
DOI:10.1002/prot.26833
PMID:40304050
|
评论 | 本文介绍了CASP特别兴趣小组(SIGs)的成立及其在促进跨学科对话和合作中的作用 | 通过建立特别兴趣小组和在线研讨会系列,促进了CASP社区成员之间的持续对话和跨学科合作 | 未提及具体的预测算法或技术的改进细节 | 促进CASP社区成员之间的持续对话和跨学科合作 | CASP社区成员,包括深度学习专家和NMR专家等 | 生物分子结构预测 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
12425 | 2025-05-01 |
Automated Operative Phase and Step Recognition in Vestibular Schwannoma Surgery: Development and Preclinical Evaluation of a Deep Learning Neural Network (IDEAL Stage 0)
2025-Apr-30, Neurosurgery
IF:3.9Q1
DOI:10.1227/neu.0000000000003466
PMID:40304484
|
research paper | 开发并评估了一种深度学习神经网络,用于自动识别前庭神经鞘瘤手术中的操作阶段和步骤 | 首次将机器学习应用于长时间(中位数超过5小时)、数据量大的手术视频分析,特别是在前庭神经鞘瘤切除术中 | 在个别步骤分类上仍有改进空间,且样本量较小 | 开发并评估一种能够自动识别手术工作流程的机器学习模型,用于前庭神经鞘瘤切除术 | 21例显微镜下经乙状窦后入路前庭神经鞘瘤切除术的手术视频 | digital pathology | vestibular schwannoma | deep learning | CNN and RNN | video | 21例手术视频 | NA | NA | NA | NA |
12426 | 2025-05-01 |
Functional blepharoptosis screening with generative augmented deep learning from external ocular photography
2025-Apr-30, Orbit (Amsterdam, Netherlands)
DOI:10.1080/01676830.2025.2497460
PMID:40304715
|
research paper | 开发并验证了一种深度学习模型,用于从外部眼部照片中检测功能性上睑下垂,并量化了使用合成图像增强训练数据对模型性能的影响 | 利用生成对抗网络(StyleGAN)生成的合成数据增强训练集,提高了模型检测功能性上睑下垂的性能 | 样本量相对较小,且仅来自单一的三级眼整形诊所,可能影响模型的泛化能力 | 开发一种能够从外部眼部照片中高置信度检测功能性上睑下垂的深度学习模型 | 771只眼睛的外部眼部照片,包括639例临床诊断为功能性上睑下垂和132例无此症状的患者 | computer vision | geriatric disease | deep learning, StyleGAN | CNN, GAN | image | 771只眼睛(539训练,76验证,156测试),并额外使用2000张合成图像增强训练集 | NA | NA | NA | NA |
12427 | 2025-05-01 |
Computer-aided diagnosis tool utilizing a deep learning model for preoperative T-staging of rectal cancer based on three-dimensional endorectal ultrasound
2025-Apr-30, Abdominal radiology (New York)
DOI:10.1007/s00261-025-04966-0
PMID:40304753
|
research paper | 开发了一种基于深度学习模型的计算机辅助诊断工具,用于直肠癌术前T分期 | 利用三维直肠内超声(3D-ERUS)图像,开发了一种新的深度学习模型辅助诊断工具,提高了直肠癌T分期的准确性和一致性 | 研究为回顾性分析,样本量相对较小(216例患者) | 提高直肠癌术前T分期的准确性和一致性 | 216例直肠癌患者 | digital pathology | rectal cancer | 3D-ERUS | deep learning model | image | 216例直肠癌患者(训练队列156例,测试队列60例) | NA | NA | NA | NA |
12428 | 2025-10-07 |
Advances in Infant Cry Paralinguistic Classification-Methods, Implementation, and Applications: Systematic Review
2025-Apr-29, JMIR rehabilitation and assistive technologies
DOI:10.2196/69457
PMID:40163619
|
系统综述 | 本文系统综述了过去24年婴儿哭声分类方法、实施和应用方面的进展 | 首次系统性地回顾婴儿哭声分类领域24年的发展历程,识别了从传统统计方法向机器学习和深度学习方法的转变趋势 | 90%的模型未在实际应用中部署,数据隐私和保密性考虑不足,联邦学习等去噪技术使用有限 | 系统回顾婴儿哭声分类技术的进展,识别该领域的最新趋势和发展方向 | 婴儿哭声信号 | 自然语言处理 | NA | 音频信号处理 | 机器学习,深度学习,混合方法 | 音频 | 126项符合条件的研究 | NA | NA | NA | NA |
12429 | 2025-05-01 |
Low-Rank Fine-Tuning Meets Cross-modal Analysis: A Robust Framework for Age-Related Macular Degeneration Categorization
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01513-7
PMID:40301288
|
研究论文 | 提出了一种创新的多模态深度学习框架,用于高效应用于多模态年龄相关性黄斑变性分类任务 | 引入了低秩适应(LoRA)技术以减少多模态集成的计算复杂性,并使用深度典型相关分析(DCCA)进行非线性映射和特征融合 | NA | 解决单模态信息不足以完全捕捉年龄相关性黄斑变性复杂病理特征的问题 | 年龄相关性黄斑变性(AMD)患者 | 计算机视觉 | 年龄相关性黄斑变性 | 深度典型相关分析(DCCA),低秩适应(LoRA) | Vision Transformer | 图像(CFP和OCT) | 公共数据集MMC-AMD | NA | NA | NA | NA |
12430 | 2025-05-01 |
Attention-Based Dual-Path Deep Learning for Blood Cell Image Classification Using ConvNeXt and Swin Transformer
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01479-6
PMID:40301289
|
研究论文 | 本文提出了一种基于注意力机制的双路径深度学习架构,结合ConvNeXt和Swin Transformer网络,用于血液细胞图像分类 | 创新性地结合了卷积神经网络和Transformer的优势,并引入了多尺度预处理模块(MPM)以提升图像质量 | 未提及模型在临床实际应用中的具体验证情况 | 提高血液细胞图像分类的准确性和效率,以辅助血液学疾病的诊断 | 血液细胞图像 | 计算机视觉 | 血液疾病 | 深度学习 | ConvNeXt, Swin Transformer | 图像 | 17,092张血液细胞图像 | NA | NA | NA | NA |
12431 | 2025-05-01 |
Super-Resolution Deep Learning Reconstruction for T2*-Weighted Images: Improvement in Microbleed Lesion Detection and Image Quality
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01522-6
PMID:40301290
|
research paper | 本研究评估了超分辨率深度学习重建(SR-DLR)在脑部MRI中检测微出血和提升图像质量的效果 | SR-DLR在微出血检测和图像清晰度方面显著优于传统DLR方法 | 研究为回顾性分析,样本量较小(69例患者) | 评估SR-DLR在脑部MRI中提升微出血检测和图像质量的效果 | 69例接受3T脑部MRI检查的患者(44名女性,平均年龄66.2岁) | digital pathology | 脑血管疾病 | 3T脑部MRI(T2*加权2D梯度回波和3D血流敏感黑血成像) | 深度学习超分辨率重建(SR-DLR) | MRI图像 | 69例患者 | NA | NA | NA | NA |
12432 | 2025-05-01 |
A Dirichlet Distribution-Based Complex Ensemble Approach for Breast Cancer Classification from Ultrasound Images with Transfer Learning and Multiphase Spaced Repetition Method
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01515-5
PMID:40301291
|
研究论文 | 提出了一种基于Dirichlet分布的复杂集成方法,结合迁移学习和多阶段间隔重复方法,用于从超声图像中进行乳腺癌分类 | 将教育科学中的间隔重复方法首次应用于人工智能领域,结合Dirichlet分布进行模型集成,提高了分类准确率和学习效率 | 研究仅使用了BUSI数据集,样本来源单一,需要更多外部数据验证模型的泛化能力 | 开发一种高精度的乳腺癌超声图像分类系统 | 乳腺癌超声图像 | 计算机视觉 | 乳腺癌 | 迁移学习、数据增强、间隔重复方法 | DenseNet201, InceptionV3, VGG16, ResNet152的集成模型 | 超声图像 | BUSI数据集(具体数量未提及) | NA | NA | NA | NA |
12433 | 2025-05-01 |
Multimodal Masked Autoencoder Based on Adaptive Masking for Vitiligo Stage Classification
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01521-7
PMID:40301294
|
研究论文 | 提出了一种基于自适应掩码的多模态掩码自编码器(Multi-MAE),用于白癜风分期分类 | 通过自适应掩码策略减少对标注多模态数据的依赖,并采用预训练策略缓解多模态数据稀缺问题 | 多模态数据标注困难且数据稀缺 | 提高白癜风分期的分类准确性 | 白癜风患者的临床图像和伍德灯图像 | 计算机视觉 | 白癜风 | 多模态图像分析 | Multimodal Masked Autoencoder (Multi-MAE) | 图像 | 未标注的皮肤病图像数据集 | NA | NA | NA | NA |
12434 | 2025-10-07 |
Renewable energy forecasting using optimized quantum temporal model based on Ninja optimization algorithm
2025-Apr-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-97109-w
PMID:40289143
|
研究论文 | 本研究提出一种基于忍者优化算法的优化量子时序模型,用于提高可再生能源预测性能 | 首次将忍者优化算法(NiOA)与量子时序模型(QTM)结合,通过二进制忍者优化引擎实现特征选择优化 | 未明确说明数据集的具体规模和来源,缺乏与其他先进深度学习模型的详细对比 | 优化可再生能源预测的准确性和性能 | 可再生能源预测系统 | 机器学习 | NA | 深度学习,优化算法 | 量子时序模型(QTM) | 可再生能源时间序列数据 | NA | NA | 量子时序模型 | 准确率,RMSE | NA |
12435 | 2025-05-01 |
The evaluation model of engineering practice teaching with complex network analytic hierarchy process based on deep learning
2025-Apr-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-99777-0
PMID:40289170
|
研究论文 | 本研究构建了一种基于物联网技术、复杂网络层次分析法和深度学习的工程实践教学评价模型,旨在提升高校工程实践教学质量管理效率 | 结合物联网技术、复杂网络层次分析法和深度学习(RNN和CNN)构建全新教学评价模型,并引入动态特性实现模型持续更新以适应教育环境变化 | 模型预测一致性存在波动(76-98%),且样本数据为模拟生成(500名学生),需进一步验证实际应用效果 | 优化高校工程实践教学质量评价体系 | 高校工程实践教学课程及学生表现数据 | 教育技术 | NA | NLP、GAN、复杂网络分析 | RNN、CNN | 课程文本数据、学生表现数据 | 10个专业的500名学生模拟数据 | NA | NA | NA | NA |
12436 | 2025-05-01 |
Leveraging multi-source data and teleconnection indices for enhanced runoff prediction using coupled deep learning models
2025-Apr-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-00115-1
PMID:40289219
|
research paper | 本研究通过结合统计和深度学习方法,提出了两种创新的耦合模型SRA-SVR和SRA-MLPR,以提高径流预测的准确性和稳定性 | 结合了统计和深度学习方法的优势,利用逐步回归分析处理高维数据和多重共线性,同时整合了80个大气环流指数作为遥相关变量 | 研究仅以雅砻江流域为案例进行模型验证,未在其他流域进行广泛测试 | 提高中长期的径流预测准确性,以支持洪水控制、干旱恢复、水资源开发和生态改善 | 雅砻江流域的径流数据 | machine learning | NA | Stepwise Regression Analysis (SRA), Support Vector Regression (SVR), Multi-Layer Perceptron Regression (MLPR), SHAP analysis | SRA-SVR, SRA-MLPR | hydrological data, atmospheric circulation indices | 雅砻江流域的径流数据及80个大气环流指数 | NA | NA | NA | NA |
12437 | 2025-05-01 |
Sweet pepper yield modeling via deep learning and selection of superior genotypes using GBLUP and MGIDI
2025-Apr-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-99779-y
PMID:40289216
|
研究论文 | 通过深度学习和GBLUP、MGIDI方法对甜椒产量进行建模并筛选优良基因型 | 结合卷积神经网络(CNN)模型与基因组最佳线性无偏预测(GBLUP)和多性状基因型-理想型距离指数(MGIDI),有效预测甜椒产量并筛选优良基因型 | 研究仅涉及29个甜椒种质,样本量较小 | 提高甜椒产量预测和优良基因型筛选的效率 | 甜椒(Capsicum annuum L.)种质 | 数字农业 | NA | ISSR标记、深度学习 | CNN、GBLUP、MGIDI | 形态性状数据、基因组数据 | 29个甜椒种质,每个种质3个重复 | NA | NA | NA | NA |
12438 | 2025-10-07 |
Predicting Short-Term Mortality in Patients With Acute Pulmonary Embolism With Deep Learning
2025-Apr-25, Circulation journal : official journal of the Japanese Circulation Society
IF:3.1Q2
DOI:10.1253/circj.CJ-24-0630
PMID:39617426
|
研究论文 | 开发基于深度学习的多模态模型预测急性肺栓塞患者的短期死亡率 | 首次将对比增强多排计算机断层扫描与临床/人口统计学数据结合,构建多模态深度学习模型用于急性肺栓塞死亡率预测 | 样本量相对较小(207例患者),仅包含单中心数据 | 开发优于传统PESI评分的急性肺栓塞短期死亡率预测模型 | 急性肺栓塞患者 | 医学影像分析 | 肺栓塞 | 对比增强多排计算机断层扫描 | CNN, Transformer | 影像数据, 临床数据, 人口统计学数据 | 207例急性肺栓塞患者(其中53例死亡) | NA | 多模态深度学习架构 | AUC | NA |
12439 | 2025-10-07 |
[Cross-session motor imagery-electroencephalography decoding with Riemannian spatial filtering and domain adaptation]
2025-Apr-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
DOI:10.7507/1001-5515.202411035
PMID:40288968
|
研究论文 | 提出一种黎曼空间滤波与域自适应方法,用于提升跨会话运动想象脑电信号分类的准确性和效率 | 通过多模块协同框架解决源域与目标域数据分布不一致问题,显著提升跨会话MI-EEG分类模型的泛化能力 | 在复杂迁移学习场景中的适用性仍需进一步研究 | 提高跨会话运动想象脑机接口分类任务的性能 | 运动想象脑电信号 | 脑机接口 | NA | 脑电图 | 域自适应 | 脑电信号 | 三个公共数据集 | NA | 黎曼空间滤波 | 分类准确率, 计算效率 | NA |
12440 | 2025-10-07 |
[Research progress in motor assessment of neurodegenerative diseases driven by motion capture data]
2025-Apr-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
DOI:10.7507/1001-5515.202403004
PMID:40288984
|
综述 | 本文综述了基于运动捕捉数据的神经退行性疾病运动评估研究进展 | 将神经退行性疾病运动评估方法按特征提取方式分为统计分析、机器学习和深度学习三类进行对比分析 | NA | 探讨运动捕捉数据驱动的神经退行性疾病运动评估方法 | 神经退行性疾病患者的运动功能评估 | 机器学习 | 神经退行性疾病 | 运动捕捉技术 | 统计分析,机器学习,深度学习 | 运动捕捉数据 | NA | NA | NA | NA | NA |