本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 12541 | 2025-10-07 |
Lossless compression-based detection of osteoporosis using bone X-ray imaging
2024, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.3233/XST-230238
PMID:38393881
|
研究论文 | 提出一种基于深度学习和无损压缩的骨质疏松检测方法,通过骨X射线图像区分骨质疏松患者与健康个体 | 通过分离感兴趣区域和非感兴趣区域减少数据冗余,并增强空间和统计特征 | NA | 改进基于骨X射线图像的骨质疏松诊断方法 | 骨质疏松患者和健康个体的骨X射线图像 | 计算机视觉 | 骨质疏松症 | X射线成像 | SVM | 图像 | NA | NA | NA | AUC | NA |
| 12542 | 2025-10-07 |
Label-free imaging of nuclear membrane for analysis of nuclear import of viral complexes
2023-12, Journal of virological methods
IF:2.2Q3
DOI:10.1016/j.jviromet.2023.114834
PMID:37875225
|
研究论文 | 本研究开发了一种基于深度学习的方法,利用透射光显微镜实现核膜的无标记成像,用于分析HIV-1病毒复合物的核输入过程 | 首次使用深度神经网络模型通过透射光显微镜实现核膜的无标记可视化,避免了传统荧光标记的局限性 | 模型训练基于固定细胞数据,虽然已证明可适用于活细胞成像,但在原代细胞中的应用仍需进一步验证 | 研究HIV-1病毒复合物在非分裂细胞中的核输入机制 | HIV-1病毒复合物、细胞核膜、核孔复合物 | 数字病理 | HIV感染 | 透射光显微镜、荧光显微镜、单病毒追踪 | 深度神经网络 | 图像 | 未明确说明具体样本数量 | 未明确说明 | 未明确说明具体架构 | 预测准确性(通过与荧光标记真实值对比验证) | NA |
| 12543 | 2025-10-07 |
Application of an artificial intelligence-based tool in [18F]FDG PET/CT for the assessment of bone marrow involvement in multiple myeloma
2023-10, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-023-06339-5
PMID:37493665
|
研究论文 | 本研究验证了一种基于三维深度学习的AI工具,用于自动化评估多发性骨髓瘤患者PET/CT图像中骨髓代谢活性 | 首次开发基于深度学习的全自动三维工具,用于多发性骨髓瘤骨髓代谢活性的定量评估,为PET/CT解读标准化提供新方法 | 样本量较小(35例患者),需要在更大患者队列中进行前瞻性验证 | 验证AI工具在多发性骨髓瘤PET/CT图像中自动评估骨髓代谢活性的可行性 | 35例未经治疗的连续多发性骨髓瘤患者 | 数字病理 | 多发性骨髓瘤 | [18F]FDG PET/CT成像 | 深度学习 | 医学影像(PET/CT扫描) | 35例多发性骨髓瘤患者 | NA | 三维深度学习网络 | 相关性分析(p值),代谢肿瘤体积(MTV),总病灶糖酵解(TLG) | NA |
| 12544 | 2025-10-07 |
Protocol for automated multivariate quantitative-image-based cytometry analysis by fluorescence microscopy of asynchronous adherent cells
2023-09-15, STAR protocols
IF:1.3Q4
DOI:10.1016/j.xpro.2023.102446
PMID:37453067
|
研究论文 | 提出基于荧光显微镜的异步贴壁细胞多变量定量图像细胞术分析协议 | 开发集成现代人工智能工具的开源Fiji脚本,应用深度学习实现稳健的自动化细胞核分割 | NA | 建立自动化多变量定量图像细胞术分析流程 | 异步贴壁细胞 | 数字病理 | NA | 荧光显微镜,定量图像细胞术 | 深度学习 | 荧光显微镜图像 | NA | Fiji | NA | NA | NA |
| 12545 | 2025-10-07 |
A knowledge-integrated deep learning framework for cellular image analysis in parasite microbiology
2023-09-15, STAR protocols
IF:1.3Q4
DOI:10.1016/j.xpro.2023.102452
PMID:37537845
|
研究论文 | 提出一个知识整合的深度学习框架,用于寄生虫微生物学中的细胞图像分析 | 将领域知识与深度学习相结合,提供端到端的细胞图像分析框架 | NA | 开发用于寄生虫微生物学细胞图像分析的深度学习框架 | 微生物细胞图像 | 计算机视觉 | 寄生虫感染 | 细胞图像分析 | 深度学习 | 细胞图像 | NA | NA | NA | NA | NA |
| 12546 | 2025-10-07 |
AORTA Gene: Polygenic prediction improves detection of thoracic aortic aneurysm
2023-Aug-25, medRxiv : the preprint server for health sciences
DOI:10.1101/2023.08.23.23294513
PMID:37662232
|
研究论文 | 本研究开发了包含110万个变异的胸主动脉直径多基因评分模型AORTA Gene,相比仅使用临床因素的模型能更准确预测胸主动脉瘤 | 首次将深度学习测量的主动脉直径与全基因组关联研究结合,构建了包含110万个变异的多基因评分模型 | 需要更大规模和更多样化的队列来开发更强大和公平的评分模型 | 通过多基因评分改进胸主动脉瘤的检测能力 | 人类胸主动脉直径测量与遗传变异分析 | 机器学习 | 心血管疾病 | 深度学习,全基因组关联研究(GWAS),多基因评分 | 深度学习模型 | 医学影像数据,基因数据 | UK Biobank 49,939人(训练集39,524人,测试集4,962人),MGB Biobank 5,469人,Framingham Heart Study 1,298人,All of Us 610人 | NA | NA | 方差解释率,AUROC | NA |
| 12547 | 2025-10-07 |
Developing and verifying automatic detection of active pulmonary tuberculosis from multi-slice spiral CT images based on deep learning
2020, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.3233/XST-200662
PMID:32651351
|
研究论文 | 开发基于深度学习的自动检测系统,用于从多层螺旋CT图像中识别活动性肺结核 | 首次将U-Net深度学习算法应用于活动性肺结核的自动检测和病灶分割,并实现2D病灶向3D病灶的转换 | 回顾性研究,数据来源于单一医疗机构,样本量有限 | 简化活动性肺结核的诊断流程并提高诊断准确性 | 活动性肺结核患者、肺炎患者和正常受试者的CT图像 | 计算机视觉 | 肺结核 | 多层螺旋CT成像 | 深度学习 | CT图像 | 846名患者(训练集:337例ATB、110例肺炎、120例正常;测试集:139例ATB、40例肺炎、100例正常) | NA | U-Net | AUC, 准确率, 灵敏度, 特异性, 阳性预测值, 阴性预测值 | NA |
| 12548 | 2025-05-13 |
From classical approaches to artificial intelligence, old and new tools for PDAC risk stratification and prediction
2025-Jul, Seminars in cancer biology
IF:12.1Q1
DOI:10.1016/j.semcancer.2025.03.004
PMID:40147701
|
review | 本文探讨了胰腺导管腺癌(PDAC)风险分层的演变,比较了传统流行病学框架与AI驱动的方法 | 提出将AI技术整合到PDAC风险分层中,以动态模型整合多种数据集,发现新的相互作用和风险特征 | 临床转化中的挑战包括数据稀缺、模型可解释性和外部验证 | 开发可扩展的个性化预测工具,以改善PDAC的早期检测和患者预后 | 胰腺导管腺癌(PDAC) | machine learning | pancreatic cancer | genome-wide association studies, polygenic risk scores, radiomics | machine learning, deep learning | genetic, clinical, lifestyle, imaging data | NA | NA | NA | NA | NA |
| 12549 | 2025-05-13 |
Evaluating crash risk factors of farm equipment vehicles on county and non-county roads using interpretable tabular deep learning (TabNet)
2025-Jul, Accident; analysis and prevention
DOI:10.1016/j.aap.2025.108048
PMID:40252392
|
研究论文 | 本研究利用可解释的表格深度学习模型TabNet评估了农用设备车辆在县道和非县道上的碰撞风险因素 | 首次应用TabNet模型分析农用设备车辆事故严重性因素,并比较县道与非县道差异,提供特征重要性和SHAP图的可解释性 | 研究基于特定数据集,可能无法完全代表所有地区的农用设备车辆事故情况 | 评估农用设备车辆在不同类型道路上的碰撞风险因素,为制定针对性安全措施提供依据 | 涉及农用设备车辆的交通事故 | 机器学习 | NA | TabNet, SMOTE, SHAP | TabNet | 表格数据 | 未明确说明具体样本量(农用设备车辆事故数据) | NA | NA | NA | NA |
| 12550 | 2025-10-07 |
A general deep learning model for predicting and classifying pea protein content via visible and near-infrared spectroscopy
2025-Jun-30, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.143617
PMID:40049135
|
研究论文 | 本研究开发了一种基于改进卷积神经网络架构的PeaNet模型,用于通过可见光和近红外光谱预测和分类豌豆蛋白含量 | 提出了一种通用的深度学习模型PeaNet,在豌豆蛋白含量预测和分类任务中显著优于传统机器学习模型和常规深度学习架构 | 模型仅在52个豌豆品种的156个光谱数据集上验证,样本多样性可能有限 | 开发快速准确的豌豆蛋白含量检测方法,用于育种和食品质量控制 | 豌豆蛋白含量 | 机器学习 | NA | 可见光和近红外光谱 | CNN | 光谱数据 | 52个豌豆品种的156个光谱数据集 | NA | 改进的卷积神经网络 | R值, 分类准确率 | NA |
| 12551 | 2025-05-13 |
Forecasting climate change effects on Saline Lakes through advanced remote sensing and deep learning
2025-Jun-10, The Science of the total environment
DOI:10.1016/j.scitotenv.2025.179582
PMID:40324314
|
研究论文 | 本研究通过先进的遥感和深度学习技术预测气候变化对盐湖的影响 | 结合SRGAN和MRS技术提升卫星图像分辨率,并利用CA-Markov模型和LSTM算法高精度预测盐湖未来变化 | 研究结果依赖于RCP8.5气候情景假设,可能无法涵盖所有潜在气候变化情况 | 预测气候变化对盐湖特征及周边生态环境的影响 | 查卡湖、图兹湖和拉扎扎湖等盐湖 | 遥感与深度学习 | NA | SRGAN、MRS、CA-Markov建模、LSTM算法 | SRGAN、LSTM | 卫星图像 | 查卡湖、图兹湖和拉扎扎湖等多个盐湖的长期观测数据 | NA | NA | NA | NA |
| 12552 | 2024-12-05 |
Correction to: Deep learning-based reconstruction improves the image quality of low-dose CT enterography in patients with inflammatory bowel disease
2025-Jun, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04694-x
PMID:39630201
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 12553 | 2024-12-12 |
Evaluating deep learning and radiologist performance in volumetric prostate cancer analysis with biparametric MRI and histopathologically mapped slides
2025-Jun, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04734-6
PMID:39658736
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 12554 | 2025-10-07 |
DKCN-Net: Deep kronecker convolutional neural network-based lung disease detection with federated learning
2025-Jun, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 提出基于深度克罗内克卷积神经网络和联邦学习的肺部疾病检测方法 | 结合联邦学习保护数据隐私,提出新型DKCN-Net网络架构,集成深度克罗内克神经网络和平行卷积神经网络 | NA | 开发在保护隐私前提下实现高稳定性肺部疾病检测的深度学习技术 | 肺部CT图像中的疾病检测 | 计算机视觉 | 肺癌 | CT成像 | CNN, 联邦学习 | CT图像 | 来自LIDC-IDRI数据库的CT图像 | NA | DKCN-Net, DKN, PCNN, 3D-FCN | 准确率, 损失率, 均方误差, 真阳性率, 真阴性率 | NA |
| 12555 | 2025-10-07 |
Bootstrap inference and machine learning reveal core differential plasma metabolic connectome signatures in major depressive disorder
2025-Jun-01, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2025.02.109
PMID:40044084
|
研究论文 | 通过自助法推断和机器学习识别重度抑郁症患者血浆代谢连接组的核心差异特征 | 首次在大规模人群中构建代谢相关性网络并识别MDD特异的网络特征,突破了传统单一生化标志物分析的局限 | 研究基于横断面数据,无法确定代谢网络改变与抑郁症的因果关系 | 揭示重度抑郁症的代谢网络特征并开发诊断模型 | 182,053名UK Biobank参与者(9,425名MDD患者和172,628名健康对照) | 机器学习 | 重度抑郁症 | 血浆代谢组学 | 深度学习, 机器学习, XGBoost | 代谢组数据 | 182,053人 | NA | NA | 准确率, AUROC | NA |
| 12556 | 2025-10-07 |
Development of a digital algorithm for assessing tumor-stroma ratio, tumor budding and tumor infiltrating lymphocytes in vulvar squamous cell carcinomas
2025-Jun, Annals of diagnostic pathology
IF:1.5Q3
|
研究论文 | 开发用于评估外阴鳞状细胞癌中肿瘤-间质比率、肿瘤出芽和肿瘤浸润淋巴细胞的全自动数字算法 | 首次针对VSCC开发集成TSR、TB和TILs评估的深度学习算法,实现无需人工校正的自动化定量分析 | 样本量较小(41例VSCC),需在更大队列中验证算法并与临床预后关联 | 开发数字化评估方法并探索p16状态对肿瘤微环境特征的影响 | 外阴鳞状细胞癌组织样本 | 数字病理 | 外阴鳞状细胞癌 | 免疫组织化学染色(CD3/细胞角蛋白、CD8/细胞角蛋白) | 深度学习 | 病理组织图像 | 41例VSCC病例(独立训练集+研究队列) | NA | NA | 一致性分析(与人工评估对比) | NA |
| 12557 | 2025-05-13 |
Enhancing atrial fibrillation detection in PPG analysis with sparse labels through contrastive learning
2025-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108698
PMID:40054320
|
研究论文 | 本研究探讨了自监督对比学习在基于PPG的心房颤动检测中的应用,以减少对标记数据的依赖 | 使用自监督对比学习框架(SimCLR和BYOL)预训练模型,显著减少了对标记数据的需求,并在少量标记数据上微调后取得了优于监督学习的效果 | 研究仅针对PPG数据,未验证在其他生理信号上的适用性 | 提高基于PPG的心房颤动检测的准确性,同时减少对标记数据的依赖 | PPG信号数据 | 机器学习 | 心血管疾病 | 对比学习(SimCLR和BYOL) | 自监督学习模型 | PPG信号 | 1,209小时未标记PPG数据(来自VitalDB数据库)以及少量标记数据(来自MIMIC III、UMass和DeepBeat数据集) | NA | NA | NA | NA |
| 12558 | 2025-05-13 |
Automated Detection of Microcracks Within Second Harmonic Generation Images of Cartilage Using Deep Learning
2025-Jun, Journal of orthopaedic research : official publication of the Orthopaedic Research Society
IF:2.1Q2
DOI:10.1002/jor.26071
PMID:40113341
|
research paper | 该研究开发了一个基于YOLOv8的深度学习模型,用于自动检测、分割和量化软骨微裂纹 | 首次使用YOLOv8深度学习模型自动化检测软骨微裂纹,显著提高了检测效率和准确性 | 模型在微裂纹方向估计上存在中等程度的变异性,数据集需要扩展到更多解剖区域和疾病阶段 | 开发自动化工具以促进软骨微裂纹研究,并理解早期软骨损伤 | 关节软骨中的微裂纹 | digital pathology | osteoarthritis | second harmonic generation (SHG) imaging | YOLOv8 | image | 未明确提及具体样本数量 | NA | NA | NA | NA |
| 12559 | 2025-05-13 |
Computer-aided assessment for enlarged fetal heart with deep learning model
2025-May-16, iScience
IF:4.6Q1
DOI:10.1016/j.isci.2025.112288
PMID:40343273
|
研究论文 | 本文提出了一种基于YOLO架构的深度学习方法,用于自动化胎儿心脏扩大的评估 | 使用YOLOv8结合CBAM模块以及ResNeXtBlock残差网络,提高了胎儿心脏扩大检测的准确性和预测一致性 | 需要进一步验证以确认其临床适用性 | 通过自动化评估胎儿心脏扩大,提高产前筛查的准确性和效率 | 胎儿心脏扩大的超声视频 | 计算机视觉 | 先天性心脏病 | 深度学习 | YOLOv8, YOLOv11, ResNeXtBlock | 超声视频 | NA | NA | NA | NA | NA |
| 12560 | 2025-05-13 |
NeuroPred-AIMP: Multimodal Deep Learning for Neuropeptide Prediction via Protein Language Modeling and Temporal Convolutional Networks
2025-May-12, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.5c00444
PMID:40258183
|
研究论文 | 提出了一种名为NeuroPred-AIMP的多模态深度学习模型,用于通过蛋白质语言建模和时间卷积网络预测神经肽 | 结合蛋白质语言模型(ESM)的全局语义表示和时间卷积网络(TCN)的多尺度结构特征,引入残差增强的自适应特征融合机制,动态重新校准特征贡献,实现进化和局部序列信息的稳健整合 | 依赖于有限的实验验证数据,可能影响模型的泛化能力 | 提高神经肽识别的准确性,以促进神经系统疾病治疗和基于肽的药物设计 | 神经肽 | 自然语言处理 | 神经系统疾病 | 蛋白质语言建模,时间卷积网络 | ESM, TCN | 蛋白质序列数据 | NA | NA | NA | NA | NA |