深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24907 篇文献,本页显示第 12561 - 12580 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
12561 2024-11-23
Diagnostic performance of artificial intelligence in detecting oral potentially malignant disorders and oral cancer using medical diagnostic imaging: a systematic review and meta-analysis
2024, Frontiers in oral health IF:3.0Q1
meta-analysis 本文通过系统综述和荟萃分析评估了人工智能在医学诊断影像中检测口腔潜在恶性病变和口腔癌的诊断性能 本文首次系统性地评估了AI算法在口腔癌检测中的诊断准确性,并发现深度学习架构,特别是卷积神经网络,在检测口腔潜在恶性病变和口腔癌方面表现出色 本文仅评估了已发表的研究,可能存在发表偏倚;此外,研究间的异质性较大,可能影响结果的普适性 评估AI驱动的诊断方法在医学影像中检测口腔潜在恶性病变和口腔癌的诊断准确性 口腔潜在恶性病变和口腔癌 machine learning 口腔癌 NA CNN image 筛选了296篇文章,包括55项研究进行定性综合,选择了18项研究进行荟萃分析
12562 2024-11-23
A transformer-based deep learning model for identifying the occurrence of acute hematogenous osteomyelitis and predicting blood culture results
2024, Frontiers in microbiology IF:4.0Q2
研究论文 本文开发了一种基于Transformer的深度学习模型,用于识别急性血源性骨髓炎的发生并预测血培养结果 本文首次将Transformer模型应用于急性血源性骨髓炎的识别和血培养结果的预测 本文仅分析了实验室指标与骨髓炎及其相关诊断的关系,未考虑其他可能影响因素 开发一种能够有效识别急性血源性骨髓炎并预测血培养结果的深度学习模型 18岁以下的急性血源性骨髓炎患者及其血培养结果 机器学习 骨髓炎 Transformer Transformer 实验室指标 634名18岁以下患者
12563 2024-11-23
Compare three deep learning-based artificial intelligence models for classification of calcified lumbar disc herniation: a multicenter diagnostic study
2024, Frontiers in surgery IF:1.6Q2
研究论文 本文比较了三种基于深度学习的人工智能模型在钙化性腰椎间盘突出分类中的应用 本文开发并验证了一种基于侧位腰椎磁共振成像的人工智能诊断模型,用于识别钙化性腰椎间盘突出 研究时间跨度较长,且仅限于特定类型的腰椎间盘突出 开发和验证一种用于识别钙化性腰椎间盘突出的人工智能诊断模型 钙化性腰椎间盘突出患者 计算机视觉 腰椎间盘突出 深度学习 ResNet-34 图像 1224名患者,包括610名男性和614名女性,平均年龄53.34 ± 10.61岁
12564 2024-11-23
Construction of a 2.5D Deep Learning Model for Predicting Early Postoperative Recurrence of Hepatocellular Carcinoma Using Multi-View and Multi-Phase CT Images
2024, Journal of hepatocellular carcinoma IF:4.2Q2
研究论文 构建了一个基于2.5D深度学习模型的CT影像,用于预测肝细胞癌术后早期复发 提出了一个2.5D深度学习模型,结合多视角和多相位CT影像,用于预测肝细胞癌术后早期复发 3D深度学习模型在内部和外部验证集上表现不佳,表明存在过拟合问题 构建一个基于2.5D深度学习模型的CT影像,用于预测肝细胞癌术后早期复发 肝细胞癌术后早期复发的预测 机器学习 肝癌 深度学习 2.5D深度学习模型 CT影像 232名患者用于训练和内部验证,91名患者用于外部验证
12565 2024-11-23
Large Language Models in Neurosurgery
2024, Advances in experimental medicine and biology
研究论文 本文探讨了大型语言模型(LLM)在神经外科中的应用及其潜在的优缺点 本文首次详细讨论了大型语言模型在神经外科领域的应用,特别是ChatGPT在生成手术报告和手术笔记方面的潜力 本文未详细讨论大型语言模型在实际应用中可能遇到的伦理和技术挑战 探讨大型语言模型在神经外科中的应用及其潜在影响 大型语言模型(如ChatGPT)在神经外科中的应用 自然语言处理 NA 深度学习 Transformer 文本 NA
12566 2024-11-23
Navigating Mathematical Basics: A Primer for Deep Learning in Science
2024, Advances in experimental medicine and biology
研究论文 本文提供了一个简明的数学基础介绍,旨在帮助科学家理解深度学习中的基本数学符号 本文的创新之处在于将数学基础与深度学习原理相结合,为非数学背景的读者提供了一个快速入门的途径 由于篇幅限制,本文无法替代需要多门课程和多年时间才能巩固的扎实数学知识 本文的研究目的是帮助非数学背景的读者克服阅读使用数学符号的深度学习文本时的障碍 本文主要研究对象是深度学习中的基本数学符号和模型 机器学习 NA NA 全连接前馈深度神经网络 NA NA
12567 2024-11-23
Machine and Deep Learning in Hyperspectral Fluorescence-Guided Brain Tumor Surgery
2024, Advances in experimental medicine and biology
研究论文 本文探讨了在荧光引导的脑肿瘤手术中使用机器学习和深度学习方法处理高光谱成像数据的过程 本文结合了机器学习和深度学习方法,提出了一种新的流程,用于从离体高光谱荧光图像中提取和处理相关发射光谱,并使用多种机器学习模型对脑肿瘤进行分类 本文的研究结果主要基于离体数据,尚未在临床环境中验证其有效性 旨在改进荧光引导的脑肿瘤手术中对肿瘤边缘的识别和分类 脑肿瘤及其边缘组织 机器学习 脑肿瘤 高光谱成像 机器学习模型 图像 NA
12568 2024-11-23
Inferring pointwise diffusion properties of single trajectories with deep learning
2023-11-21, Biophysical journal IF:3.2Q2
研究论文 本文提出了一种基于深度学习的机器学习方法,用于在实验时间分辨率下表征具有时间依赖性的扩散过程 该方法能够在单轨迹级别预测扩散系数或异常扩散指数等感兴趣的属性,无需对系统进行任何先验知识或假设 NA 旨在准确确定生物场景中粒子的扩散特性,揭示其背后的机制 单分子扩散的膜蛋白DC-SIGN和整合素α5β1 机器学习 NA 深度学习 NA 轨迹数据 两个膜蛋白的单分子扩散实验
12569 2024-11-23
Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence
2023-Apr-14, NPJ breast cancer IF:6.5Q1
研究论文 本文介绍了一种结合临床特征和深度学习模型,利用数字病理学数据预测乳腺癌复发检测结果和复发风险的方法 该方法在预测乳腺癌复发检测结果和复发风险方面优于传统的临床诺模图,并且在独立验证队列中表现更好 该方法的适用性可能受限于低资源设置下的测试可用性 开发一种能够准确预测乳腺癌复发检测结果和复发风险的新方法,以指导化疗的使用 激素受体阳性、HER2阴性的乳腺癌患者 数字病理学 乳腺癌 深度学习 深度学习模型 图像和临床风险因素 外部验证队列中的患者
12570 2024-11-23
Convolutional neural network scoring and minimization in the D3R 2017 community challenge
2019-01, Journal of computer-aided molecular design IF:3.0Q2
研究论文 本文评估了基于卷积神经网络(CNN)的评分函数在药物发现领域中执行常见任务的能力 本文提出了一种基于CNN的评分函数,并在D3R 2017社区挑战中进行了评估,发现其在多个虚拟筛选任务中表现优异 CNN在某些任务中表现不佳,特别是在Cathepsin S的从头对接任务中 评估基于CNN的评分函数在药物发现中的应用效果 评估CNN评分函数在识别配体姿态和分类活性或非活性配体方面的能力 机器学习 NA 卷积神经网络(CNN) CNN 结构信息 涉及D3R 2017社区挑战中的多个任务和配体
12571 2024-09-30
Can deep learning-derived IVUS predict outcomes in deferred CAD?
2025-Jan-01, International journal of cardiology IF:3.2Q2
NA NA NA NA NA NA NA NA NA NA NA NA
12572 2024-11-22
AngioPy Segmentation: An open-source, user-guided deep learning tool for coronary artery segmentation
2025-Jan-01, International journal of cardiology IF:3.2Q2
研究论文 本文介绍了一种名为AngioPy的开源深度学习工具,用于冠状动脉分割,通过用户定义的地面实况点提高性能并减少手动校正 AngioPy通过用户定义的地面实况点提高分割性能,减少手动校正的需求 NA 开发一种无需手动校正的高效冠状动脉分割工具 冠状动脉的分割和量化 计算机视觉 心血管疾病 深度学习 深度学习模型 图像 2455张图像用于模型开发,580张图像用于外部验证,203张图像用于比较分析
12573 2024-11-22
Machine Learning-Based X-Ray Projection Interpolation for Improved 4D-CBCT Reconstruction
2025, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 本文提出了一种基于机器学习的X射线投影插值方法,用于改进4D-CBCT重建 利用预训练的深度学习模型和一种新的回归预测建模方法生成中间投影,以提高4D-CBCT图像质量 NA 改进4D-CBCT重建图像质量 4D-CBCT图像重建中的投影插值 计算机视觉 NA 机器学习 深度学习模型 图像 数字仿真数据集和临床数据集
12574 2024-11-22
Breast Cancer Detection on Dual-View Sonography via Data-Centric Deep Learning
2025, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 本研究通过双视图超声成像和数据中心深度学习方法,旨在提高AI辅助的乳腺癌诊断准确性 定制基于DenseNet的模型,通过双视图超声数据集提高模型区分恶性与良性肿瘤的能力,并设计多种集成策略将双视图整合到模型输入中,以最大化性能 未提及具体局限性 提高AI辅助乳腺癌诊断的准确性 双视图乳腺超声图像 计算机视觉 乳腺癌 深度学习 DenseNet 图像 未提及具体样本数量
12575 2024-11-22
An Integrated Framework for Infectious Disease Control Using Mathematical Modeling and Deep Learning
2025, IEEE open journal of engineering in medicine and biology IF:2.7Q3
研究论文 本文提出了一种结合数学建模和深度学习的传染病控制综合框架 本文创新性地将确定性和随机模型与深度学习模型相结合,以提高解决方案预测的性能,并研究了时间延迟对感染率和疫苗接种率的影响 NA 开发有效的传染病控制策略 传染病模式预测和疫苗接种对感染率的影响 机器学习 NA 深度学习 NA 序列数据 NA
12576 2024-11-22
Multimodal AI Combining Clinical and Imaging Inputs Improves Prostate Cancer Detection
2024-Dec-01, Investigative radiology IF:7.0Q1
研究论文 本研究探讨了将临床参数与基于MRI的深度学习相结合,以提高对临床显著性前列腺癌的诊断准确性 本研究首次将临床参数与MRI-based深度学习相结合,采用多模态人工智能方法,显著提高了对临床显著性前列腺癌的诊断准确性 本研究未探讨包含病变体积对诊断效能的影响 提高对临床显著性前列腺癌的诊断准确性 临床显著性前列腺癌的检测 机器学习 前列腺癌 深度学习 多模态人工智能 图像 932例双参数前列腺MRI检查
12577 2024-11-22
Fast, high-quality, and unshielded 0.2 T low-field mobile MRI using minimal hardware resources
2024-Dec, Magma (New York, N.Y.)
研究论文 提出了一种基于深度学习的低场移动MRI策略,使用最少的硬件资源实现快速、高质量、无屏蔽的成像 提出了一种强大的深度学习EMI消除模型,能够准确预测MRI线圈信号中的EMI成分,并通过多层次后处理实现快速和高品质的低场MRI NA 开发一种基于深度学习的低场移动MRI策略,以实现快速、高质量、无屏蔽的成像 低场移动MRI成像技术 计算机视觉 NA 深度学习 深度学习模型 图像 20名健康志愿者参与实验
12578 2024-11-22
Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction
2024-Dec, Magma (New York, N.Y.)
研究论文 本文介绍了一种新的MR冠状动脉造影技术,通过使用之字形扇形中心ky-kz k空间轨迹和高分辨率深度学习重建(HR-DLR)来提高图像质量和扫描效率 本文创新性地结合了之字形扇形中心ky-kz k空间轨迹和高分辨率深度学习重建技术,显著缩短了扫描时间并提高了图像质量 本文仅在12名健康受试者和2名患者中进行了验证,样本量较小,需要进一步在大规模临床试验中验证其有效性和适用性 开发一种高效且高质量的MR冠状动脉造影技术,以提高患者舒适度和临床效率 健康受试者和冠状动脉疾病患者 医学影像 心血管疾病 MR冠状动脉造影 深度学习 图像 12名健康受试者和2名患者
12579 2024-09-06
Correction to: Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction
2024-Dec, Magma (New York, N.Y.)
NA NA NA NA NA NA NA NA NA NA NA NA
12580 2024-11-22
Enhanced plasmonic scattering imaging via deep learning-based super-resolution reconstruction for exosome imaging
2024-Dec, Analytical and bioanalytical chemistry IF:3.8Q1
研究论文 本文提出了一种基于深度学习的超分辨率重建方法,用于增强外泌体等离子体散射成像的分辨率 本文提出了一种新的盲超分辨率深度学习神经网络ESRGAN-SE,能够在不增加实验复杂性的情况下提高外泌体等离子体散射成像的分辨率 NA 提高外泌体等离子体散射成像的分辨率,以改进癌症诊断的准确性和效率 外泌体等离子体散射成像 计算机视觉 NA 深度学习 ESRGAN-SE 图像 NA
回到顶部