本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12581 | 2024-08-08 |
Deep learning-based dose prediction for magnetic resonance-guided prostate radiotherapy
2024-Aug-06, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17312
PMID:39106418
|
研究论文 | 本文开发了一种基于深度学习的剂量预测管道,用于前列腺MR-Linac治疗 | 利用深度学习技术快速预测剂量分布和剂量学评估标准,以辅助选择适应方法并减少治疗时间 | 仅在特定条件下进行了验证,可能需要进一步的临床验证 | 开发一种基于深度学习的剂量预测方法,以优化前列腺MR-Linac治疗的适应性放射治疗 | 前列腺癌患者接受MR-Linac治疗的剂量分布 | 机器学习 | 前列腺癌 | 深度学习 | CNN | 图像 | 35名前列腺癌患者的212张MR图像 |
12582 | 2024-08-08 |
Automated Detection of Maxillary Sinus Opacifications Compatible with Sinusitis from CT Images
2024-Aug-06, Dento maxillo facial radiology
DOI:10.1093/dmfr/twae042
PMID:39107903
|
研究论文 | 本研究开发了一种基于深度学习的自动检测模型,用于从CT图像中诊断上颌窦炎 | 采用基于You Only Look Once(YOLO)的模型进行物体检测,并通过迁移学习方法和数据增强技术提高了模型的鲁棒性 | 在挑战性测试数据集上,模型的精确度有所下降 | 提高上颌窦炎诊断的准确性,区分上颌窦炎、潴留囊肿和正常窦 | 上颌窦炎、潴留囊肿和正常窦的CT图像 | 计算机视觉 | 鼻窦炎 | 深度学习 | YOLOv8n | 图像 | 1080张冠状位CT图像,包括2158个上颌窦,其中1138个正常窦,366个囊肿,654个窦炎 |
12583 | 2024-08-08 |
Preoperative Prediction of Axillary Lymph Node Metastasis in Patients With Breast Cancer Through Multimodal Deep Learning Based on Ultrasound and Magnetic Resonance Imaging Images
2024-Aug-05, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.07.029
PMID:39107188
|
研究论文 | 本文通过结合超声和磁共振成像图像的多模态深度学习模型,预测乳腺癌患者的腋窝淋巴结转移情况 | 本文创新性地使用了多模态深度学习模型,结合超声和磁共振成像图像以及临床参数,提高了预测腋窝淋巴结转移的准确性 | NA | 研究目的是通过多模态深度学习模型预测乳腺癌患者的腋窝淋巴结转移 | 乳腺癌患者的腋窝淋巴结转移情况 | 机器学习 | 乳腺癌 | 深度学习 | 卷积神经网络 | 图像 | 共588名乳腺癌患者参与研究,包括465名主要队列患者和123名外部验证队列患者 |
12584 | 2024-08-08 |
A Deep Learning-Based Framework for Predicting Intracerebral Hemorrhage Hematoma Expansion Using Head Non-contrast CT Scan
2024-Aug-05, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.07.039
PMID:39107191
|
研究论文 | 本文开发了一种基于深度学习的全自动框架,用于使用临床非对比CT扫描预测脑内出血血肿扩张 | 该框架能够自动且稳健地识别脑内出血患者中高风险血肿扩张的情况,预测准确性优于常用的BAT评分 | NA | 开发一种全自动的深度学习框架,用于预测脑内出血中的血肿扩张 | 脑内出血患者的血肿扩张预测 | 机器学习 | 脑内出血 | 深度学习 | 两阶段框架 | 非对比CT扫描图像 | 回顾性数据集包含2484例,前瞻性数据集包含500例 |
12585 | 2024-08-08 |
scTab: Scaling cross-tissue single-cell annotation models
2024-Aug-04, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-51059-5
PMID:39098889
|
研究论文 | 本文提出了一种名为scTab的自动化细胞类型预测模型,专门针对表格数据,并通过新颖的数据增强方案在大规模单细胞RNA-seq数据集上进行训练 | scTab模型能够处理大规模数据集,并通过数据增强方案提高模型在跨组织注释中的泛化能力 | NA | 开发能够在大规模单细胞RNA-seq数据集上进行跨组织细胞类型预测的自动化模型 | 单细胞RNA-seq数据的细胞类型预测 | 机器学习 | NA | 单细胞RNA-seq | 神经网络 | 表格数据 | 2220万细胞 |
12586 | 2024-08-08 |
PLEKv2: predicting lncRNAs and mRNAs based on intrinsic sequence features and the coding-net model
2024-Aug-02, BMC genomics
IF:3.5Q2
DOI:10.1186/s12864-024-10662-y
PMID:39095710
|
研究论文 | 本文介绍了PLEKv2工具,该工具基于内在序列特征和编码网络模型,用于预测长非编码RNA(lncRNA)和信使RNA(mRNA) | PLEKv2相较于传统工具和基于深度学习的模型,在人类数据集上的预测准确率提高了8.1%至48.9%,并且在跨物种预测中表现出超过90%的准确率 | NA | 开发一种快速准确的工具来区分lncRNA和mRNA转录本 | lncRNA和mRNA | 生物信息学 | NA | NA | CNN | 序列数据 | NA |
12587 | 2024-08-08 |
Comparison of model-based versus deep learning-based image reconstruction for thin-slice T2-weighted spin-echo prostate MRI
2024-Aug, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04256-1
PMID:38520510
|
研究论文 | 比较基于模型的图像重建(MBIR)与新开发的基于深度学习(DL)的图像重建方法在薄层T2加权自旋回波前列腺MRI中的信号噪声比(SNR)改进效果 | 新开发的基于深度学习的图像重建方法在薄层T2加权自旋回波图像中提供了显著的SNR改进,同时保持了图像对比度 | 当深度学习重建方法达到过高水平(DL High)时,放射学锐度和对比度保真度会降低 | 比较两种图像重建方法在前列腺MRI中的性能 | 基于模型的图像重建方法与基于深度学习的图像重建方法 | 计算机视觉 | 前列腺癌 | MRI | 深度学习 | 图像 | 17名临床需要进行前列腺MRI检查的受试者 |
12588 | 2024-08-08 |
An EEG-based marker of functional connectivity: detection of major depressive disorder
2024-Aug, Cognitive neurodynamics
IF:3.1Q2
DOI:10.1007/s11571-023-10041-5
PMID:39104678
|
研究论文 | 本研究提出了一种基于脑电图(EEG)信号的新型功能连接标记P-MSWC,并利用卷积神经网络(CNN)识别重度抑郁症(MDD) | 本研究结合同步挤压小波变换和相干理论,提出了P-MSWC融合特征,该特征能全面捕捉原始EEG信号的信息并具有显著的抗噪能力 | NA | 开发一种快速且可靠的重度抑郁症检测方法 | 重度抑郁症患者与健康人群的脑功能连接差异 | 机器学习 | 精神疾病 | 同步挤压小波变换 | CNN | 脑电图信号 | 单一数据集准确率达到99.92%,合并数据集准确率达到97.86% |
12589 | 2024-08-08 |
Cognitive workload estimation using physiological measures: a review
2024-Aug, Cognitive neurodynamics
IF:3.1Q2
DOI:10.1007/s11571-023-10051-3
PMID:39104683
|
综述 | 本文综述了利用生理测量方法估计认知工作负荷的研究进展 | 详细分析了所有生理测量方法在估计认知工作负荷中的应用 | 仍需探索所有生理测量方法在估计认知工作负荷中的详细分析 | 深入分析生理测量方法在评估认知工作负荷中的应用 | 认知工作负荷的生理测量方法 | 认知神经科学 | NA | 机器学习, 深度学习 | NA | 生理数据 | NA |
12590 | 2024-08-08 |
ADHD/CD-NET: automated EEG-based characterization of ADHD and CD using explainable deep neural network technique
2024-Aug, Cognitive neurodynamics
IF:3.1Q2
DOI:10.1007/s11571-023-10028-2
PMID:39104684
|
研究论文 | 本研究提出了一种基于脑电图(EEG)的深度学习系统ADHD/CD-NET,用于客观区分注意力缺陷多动障碍(ADHD)、ADHD合并行为障碍(CD)和单纯行为障碍(CD) | 本研究首次提出了一种基于EEG的深度学习系统ADHD/CD-NET,能够客观区分ADHD、ADHD合并CD和单纯CD,并通过Grad-CAM技术解释了CNN模型的预测结果 | NA | 研究目的是开发一种能够客观区分ADHD和CD的深度学习系统,以减少误诊风险 | 研究对象包括ADHD、ADHD合并CD和单纯CD患者 | 机器学习 | 儿童神经发育障碍 | 脑电图(EEG) | 卷积神经网络(CNN) | 脑电信号 | 内部数据集包括45名ADHD患者、62名ADHD合并CD患者和16名CD患者;外部公共数据集包括61名ADHD患者和60名健康对照 |
12591 | 2024-08-08 |
Deep learning networks based decision fusion model of EEG and fNIRS for classification of cognitive tasks
2024-Aug, Cognitive neurodynamics
IF:3.1Q2
DOI:10.1007/s11571-023-09986-4
PMID:39104699
|
研究论文 | 本研究通过深度学习网络对EEG和fNIRS数据进行决策融合,以分类认知任务 | 研究展示了EEG和fNIRS数据融合在分类认知任务中的性能优于单一数据源 | NA | 探索EEG和fNIRS数据融合在认知任务分类中的应用 | EEG和fNIRS数据在认知任务分类中的应用 | 机器学习 | NA | 深度学习 | CNN, LSTM, GRU, CNN-LSTM, CNN-GRU, LSTM-GRU, CNN-LSTM-GRU | 时间序列数据 | 数据集01包含26名受试者,数据集02包含29名受试者 |
12592 | 2024-08-08 |
Clinical feasibility of deep learning based synthetic contrast enhanced abdominal CT in patients undergoing non enhanced CT scans
2024-07-31, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-68705-z
PMID:39085456
|
研究论文 | 本文旨在开发并评估基于深度学习的合成增强型腹部CT(DL-SynCCT)在非增强CT(NECT)患者中的临床可行性 | 提出了一种使用虚拟非对比CT(VNC)的弱监督学习方法来开发DL-SynCCT | NA | 评估基于深度学习的合成增强型CT在非增强CT患者中的临床应用 | 非增强CT患者 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 训练和内部验证使用了2202对回顾性收集的增强CT(CECT)图像及其对应的VNC图像;临床验证使用了来自三个机构的398名非增强CT(NECT)患者的数据 |
12593 | 2024-08-08 |
Hybrid deep learning models for the screening of Diabetic Macular Edema in optical coherence tomography volumes
2024-07-31, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-68489-2
PMID:39085461
|
研究论文 | 本文使用卷积神经网络和循环神经网络(CNN-RNN)的混合模型,在真实世界的糖尿病视网膜病变筛查项目中分析完整的光学相干断层扫描(OCT)立方体,以预测糖尿病黄斑水肿(DME)。 | 本研究避免了图像选择偏差,通过分析完整的OCT立方体,提高了在真实世界环境中检测DME的诊断准确性,并能检测到其他研究中常被忽视的黄斑外DME。 | 文章未明确提及具体的局限性。 | 开发和验证一种在真实世界糖尿病视网膜病变筛查中用于检测糖尿病黄斑水肿的高效混合深度学习模型。 | 研究对象包括4年内参与糖尿病视网膜病变筛查的4408名受试者的5314个OCT立方体。 | 计算机视觉 | 糖尿病黄斑水肿 | 光学相干断层扫描(OCT) | CNN-RNN | 图像 | 5314个OCT立方体,来自4408名受试者 |
12594 | 2024-08-08 |
Semantic-enhanced graph neural network for named entity recognition in ancient Chinese books
2024-07-30, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-68561-x
PMID:39080339
|
研究论文 | 本文提出了一种基于图神经网络的模型,用于增强古汉语书籍中的命名实体识别(NER),通过整合字典级和章节级外部知识来提升NER的性能 | 本文创新性地利用图神经网络和图注意力机制,结合外部知识(字典级和章节级信息)来增强古汉语NER的语义表示 | NA | 探索如何通过外部知识增强古汉语书籍中的命名实体识别 | 古汉语书籍中的命名实体识别 | 自然语言处理 | NA | 图神经网络(GNN) | 图注意力机制(GAT) | 文本 | 在C_CLUE数据集上进行评估 |
12595 | 2024-08-08 |
Human monkeypox disease prediction using novel modified restricted Boltzmann machine-based equilibrium optimizer
2024-07-30, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-68836-3
PMID:39080387
|
研究论文 | 本文提出了一种基于改进受限玻尔兹曼机和平衡优化器的新型深度学习方法,用于预测人类猴痘疾病 | 使用改进的受限玻尔兹曼机(MRBM)和平衡优化器(EO)进行参数调整,以最小化误差为主要目标函数,提高了猴痘疾病预测的性能 | NA | 开发一种新的深度学习方法来预测人类猴痘疾病 | 人类猴痘疾病的预测 | 机器学习 | NA | 深度学习 | 受限玻尔兹曼机(RBM) | 图像 | 使用了Monkeypox Skin Lesion Dataset中的数据 |
12596 | 2024-08-08 |
Training high-performance deep learning classifier for diagnosis in oral cytology using diverse annotations
2024-07-30, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-67879-w
PMID:39080384
|
研究论文 | 本文利用深度学习技术,通过多口腔病理学家对口腔脱落细胞学图像的标注,训练出高性能的卷积神经网络(CNN)分类器,用于诊断口腔细胞学图像 | 本文创新性地采用了概率模型和多数投票方法来处理多口腔病理学家的标注,以提高分类器的性能 | 文章指出,使用单个病理学家的标注训练的模型在许多测试中显示出非常低的准确性和较大的变异性 | 研究目的是通过深度学习技术优化卷积神经网络,以提高口腔脱落细胞学图像的诊断准确性 | 研究对象是口腔脱落细胞学图像及其多口腔病理学家的标注 | 机器学习 | NA | 深度学习 | CNN | 图像 | 14,535张图像 |
12597 | 2024-08-08 |
A multibranch and multiscale neural network based on semantic perception for multimodal medical image fusion
2024-07-30, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-68183-3
PMID:39080442
|
研究论文 | 本文介绍了一种基于语义感知的多分支多尺度神经网络,用于多模态医学图像融合 | 提出了一种新的医学图像融合技术,利用无监督图像分割增强融合过程中的语义理解,并采用多分支、多尺度的深度学习架构结合先进的注意力机制来优化特征提取和融合过程 | NA | 提高多模态医学图像融合的质量和诊断效用 | 多模态医学图像融合技术 | 计算机视觉 | NA | 深度学习 | 多分支多尺度神经网络 | 图像 | NA |
12598 | 2024-08-08 |
Automated vehicle damage classification using the three-quarter view car damage dataset and deep learning approaches
2024-Jul-30, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e34016
PMID:39104489
|
research paper | 本文介绍了使用三-四分之三视角车辆损坏数据集和深度学习方法进行自动车辆损坏分类的研究 | 引入了三-四分之三视角车辆损坏数据集(TQVCD数据集),并使用五种流行的预训练深度学习架构进行性能评估,同时实施了模型集成方法以增强分类鲁棒性 | NA | 解决车辆损坏分类领域中公共数据集稀缺和数据集构建复杂性的问题 | 车辆损坏分类 | computer vision | NA | deep learning | ResNet-50, DenseNet-160, EfficientNet-B0, MobileNet-V2, ViT | image | 三-四分之三视角车辆损坏数据集(TQVCD数据集) |
12599 | 2024-08-08 |
Rigdelet neural network and improved partial reinforcement effect optimizer for music genre classification from sound spectrum images
2024-Jul-30, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e34067
PMID:39104510
|
研究论文 | 本文提出了一种新的音乐流派分类方法,通过将音频信号转换为声谱图,并利用增强的Rigdelet神经网络(RNN)提取纹理特征,同时使用改进的部分强化效应优化器(IPREO)优化RNN,以避免局部最优并提高其泛化能力 | 本文的创新点在于结合了Rigdelet神经网络和改进的部分强化效应优化器(IPREO),以及混合CNN-双向RNN设计,有效提取复杂的序列听觉数据 | NA | 研究目的是提高音乐流派分类的准确性 | 研究对象是音乐流派分类 | 机器学习 | NA | Rigdelet神经网络(RNN) | CNN, 双向RNN | 声谱图 | 使用了GTZAN数据集进行实验 |
12600 | 2024-08-08 |
An attention-based deep learning for acute lymphoblastic leukemia classification
2024-07-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-67826-9
PMID:39075091
|
研究论文 | 本研究提出了一种基于注意力机制的深度学习模型DDRNet,用于急性淋巴细胞白血病分类,通过集成深度残差扩张块、全局和局部特征增强块以及通道和空间注意力块,提高了分类准确性和特征识别能力 | 本研究引入了深度残差扩张块、全局和局部特征增强块以及通道和空间注意力块,这些模块的组合有效解决了分类过程中的特定挑战,提高了特征的辨别能力 | NA | 开发一种高效的计算机辅助诊断系统,以帮助血液学家减少工作量,提供准确结果,并处理大量数据 | 血液细胞图像,包括嗜酸性粒细胞、淋巴细胞、单核细胞和中性粒细胞 | 机器学习 | 急性淋巴细胞白血病 | 深度学习 | 深度残差扩张卷积神经网络(DDRNet) | 图像 | 16,249张图像,分为四个类别,训练和测试比例为80:20 |