本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1261 | 2025-07-19 |
Early detection of Multidrug Resistance using Multivariate Time Series analysis and interpretable patient-similarity representations
2025-Jul-12, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108920
PMID:40675058
|
研究论文 | 本研究提出了一种新颖的可解释机器学习方法,用于预测多药耐药性(MDR),旨在提高预测准确性和解释性 | 采用基于患者相似性表示的多变量时间序列分析和图方法,增强了MDR预测的可解释性 | 研究仅基于单一ICU数据集,可能限制了结果的普适性 | 开发一种可解释的机器学习方法,用于早期检测多药耐药性 | 重症监护病房(ICU)患者的电子健康记录 | 机器学习 | 多药耐药性感染 | 多变量时间序列分析、动态时间规整、时间聚类核 | Logistic Regression, Random Forest, Support Vector Machines | 电子健康记录(时间序列数据) | 来自University Hospital of Fuenlabrada ICU数据集的真实世界电子健康记录 |
1262 | 2025-07-19 |
Adversarial learning for beamforming domain transfer in ultrasound medical imaging
2025-Jul-09, Ultrasonics
IF:3.8Q1
DOI:10.1016/j.ultras.2025.107749
PMID:40674811
|
研究论文 | 本研究利用生成对抗网络(GANs)将平面波DAS超声图像转换为类似F-DMAS生成的图像,以提高超声图像质量 | 首次提出使用GANs实现超声图像从DAS到F-DMAS的域转换,并引入纹理分析验证生成图像与目标图像的一致性 | 研究依赖于特定类型的超声图像(平面波DAS),且需要专家进行临床评估 | 提高在无法获取原始RF数据情况下的超声图像质量 | 超声B模式图像 | 医学影像处理 | NA | 生成对抗网络(GANs) | Pix2Pix, Pyramidal Pix2Pix, CycleGAN | 超声图像 | NA |
1263 | 2025-07-19 |
Accounting for population structure in deep learning models for genomic analysis
2025-Jul-05, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2025.104873
PMID:40623578
|
研究论文 | 本研究探讨了深度学习模型中忽略遗传相关性是否会导致类似于传统基因组分析中的混杂效应 | 首次在深度学习模型中系统地研究了遗传相关性(群体结构)对模型性能的影响,并提出了减少捷径学习的方法 | 研究主要基于模拟和有限的实际数据集,可能无法涵盖所有潜在的群体结构情况 | 评估群体结构对基因组分析深度学习模型的影响 | 单核苷酸多态性(SNP)数据 | 机器学习 | NA | 深度学习 | 深度学习模型 | 基因组数据 | 模拟和真实世界数据集 |
1264 | 2025-07-19 |
optiGAN: a deep learning-based alternative to optical photon tracking in Python-based GATE (10+)
2025-Jul-02, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ade2b5
PMID:40490001
|
研究论文 | 本研究提出了一种基于生成对抗网络(GAN)的optiGAN模型,用于加速GATE医学物理框架中的光学光子传输模拟,同时保持高建模精度 | 将GAN模型optiGAN集成到Python版的GATE 10中,作为传统光学蒙特卡洛模拟的高效替代方案,显著降低了计算成本 | 虽然optiGAN在模拟时间上减少了约50%,但仍有8%的模拟结果与蒙特卡洛方法存在差异 | 加速光学光子传输模拟,同时保持高建模精度,以支持医学成像和探测器设计的广泛应用 | GATE医学物理模拟框架中的光学光子传输 | 医学物理 | NA | GAN | GAN | 模拟数据 | NA |
1265 | 2025-07-19 |
Challenges for implementing generative artificial intelligence (GenAI) into clinical healthcare
2025-07, Internal medicine journal
IF:1.8Q2
DOI:10.1111/imj.70035
PMID:40135733
|
review | 本文探讨了生成式人工智能(GenAI)在医疗保健领域实施的潜力与挑战 | 综述了GenAI在医疗保健中的多功能能力及其潜在影响 | 未提及具体的技术实现细节或案例研究 | 探讨GenAI在临床医疗保健中的应用潜力与实施挑战 | 生成式人工智能(GenAI)技术及其在医疗保健中的应用 | machine learning | NA | deep learning | GenAI | large and diverse datasets | NA |
1266 | 2025-07-19 |
Deep Learning-Powered Whole Slide Image Analysis in Cancer Pathology
2025-Jul, Laboratory investigation; a journal of technical methods and pathology
DOI:10.1016/j.labinv.2025.104186
PMID:40306572
|
综述 | 本文综述了深度学习在全幻灯片图像(WSI)分析中的应用及其在癌症病理学中的临床价值 | 整合深度学习模型与WSI技术,探索超出病理学家视觉感知的形态学特征,用于自动化临床诊断、组织病理学分级评估、临床结果预测及新型形态学生物标志物发现 | 讨论了将基于深度学习的数字病理学转化为临床实践所面临的机遇与挑战 | 推进深度学习驱动的WSI分析在癌症护理临床任务中的应用 | 全幻灯片图像(WSI)及癌症病理学 | 数字病理学 | 癌症 | 全幻灯片成像技术 | CNN, GCN, Transformer | 图像 | NA |
1267 | 2025-07-19 |
Comparison of an Attention-Based Multiple Instance Learning (MIL) With a Visual Transformer Model: Two Weakly Supervised Deep Learning (DL) Algorithms for the Detection of Histopathologic Lesions in the Rat Liver to Distinguish Normal From Abnormal
2025-Jul, Toxicologic pathology
IF:1.4Q4
DOI:10.1177/01926233251339653
PMID:40444726
|
研究论文 | 比较基于注意力的多实例学习(MIL)与视觉Transformer模型在弱监督深度学习算法中检测大鼠肝脏组织病理学病变的效果 | 首次在弱监督框架下比较MIL和视觉Transformer模型在组织病理学病变检测中的表现,并展示了模型在肾脏WSIs上的迁移学习能力 | 研究仅基于大鼠肝脏和肾脏的WSIs,未涉及其他器官或物种 | 提高监管毒性研究中组织病理学评估的效率 | 大鼠肝脏和肾脏的WSIs | 数字病理学 | NA | 弱监督深度学习 | MIL, Transformer | WSIs | 58项不同大鼠毒性研究的肝脏切片WSIs |
1268 | 2025-07-19 |
Artificial Intelligence in Obstetric and Gynecological MR Imaging
2025-Jul-01, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
IF:2.5Q2
DOI:10.2463/mrms.rev.2024-0077
PMID:39477505
|
综述 | 本文回顾了人工智能在产科和妇科MRI影像中的重大进展和应用 | 从基础算法技术到深度学习和高级放射组学的AI发展历程,以及AI在特定疾病诊断中的应用 | 未提及具体的技术实施细节和数据集的具体规模 | 探索AI在产科和妇科MRI影像中的应用及其未来发展方向 | 子宫平滑肌肉瘤、子宫内膜癌、宫颈癌、卵巢肿瘤和胎盘植入等妇科疾病 | 数字病理学 | 妇科疾病 | MRI、深度学习、放射组学 | NA | MRI影像 | NA |
1269 | 2025-07-19 |
Multimodal AI to forecast arrhythmic death in hypertrophic cardiomyopathy
2025-Jul, Nature cardiovascular research
IF:9.4Q1
DOI:10.1038/s44161-025-00679-1
PMID:40603582
|
研究论文 | 本文提出了一种名为MAARS的多模态人工智能方法,用于预测肥厚型心肌病患者的致命性心律失常事件 | MAARS利用基于transformer的神经网络分析多模态医疗数据,包括电子健康记录、超声心动图和放射学报告以及对比增强心脏磁共振图像,后者是该模型的独特特征 | NA | 提高肥厚型心肌病患者致命性心律失常事件的预测准确性 | 肥厚型心肌病患者 | 人工智能在医疗领域的应用 | 心血管疾病 | 深度学习 | transformer-based神经网络 | 多模态医疗数据(电子健康记录、超声心动图、放射学报告、心脏磁共振图像) | 内部和外部队列患者(具体数量未提及) |
1270 | 2025-07-19 |
Dynamic frame-by-frame motion correction for 18F-flurpiridaz PET-MPI using convolution neural network
2025-Jul-01, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.06.27.25330436
PMID:40630596
|
research paper | 提出了一种基于深度学习的自动运动校正框架,用于18F-flurpiridaz PET心肌灌注成像 | 使用3D ResNet架构实现自动帧间运动校正,减少人工干预和观察者间差异 | 研究仅基于32个临床站点的数据,可能需要更大规模验证 | 提高18F-flurpiridaz PET心肌血流定量分析的准确性和效率 | 18F-flurpiridaz PET心肌灌注成像数据 | digital pathology | cardiovascular disease | PET成像 | 3D ResNet | 3D医学影像 | 来自32个临床站点的多中心数据(NCT01347710临床试验) |
1271 | 2025-07-19 |
Noise-aware system generative model (NASGM): positron emission tomography (PET) image simulation framework with observer validation studies
2025-Jul, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17962
PMID:40660861
|
研究论文 | 开发并验证了一种基于深度学习的PET图像模拟方法NASGM,用于生成不同采集时间的PET图像 | 提出了一种新型的噪声感知系统生成模型(NASGM),采用双域鉴别器和基于Transformer的频率鉴别器结构,能够更好地模拟不同采集时间的PET图像 | 未提及在超出训练范围的时间帧上的泛化能力 | 开发一种计算高效的PET图像模拟框架,用于生成大量不同采集时间的模拟PET图像数据集 | PET图像 | 医学影像处理 | NA | 深度学习生成模型 | 条件生成对抗网络(cGAN) | 医学影像(PET/CT) | 使用公共PET/CT数据集作为输入活动和衰减图 |
1272 | 2025-07-19 |
Use of a deep learning neural network to generate bone suppressed images for markerless lung tumor tracking
2025-Jul, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17949
PMID:40660921
|
研究论文 | 本研究使用U-net神经网络生成骨抑制图像,用于无标记肺部肿瘤追踪 | 提出了一种使用U-net神经网络生成合成双能减影(sDES)图像的方法,无需额外硬件或软件 | 研究样本量有限,仅包括20名肺癌患者和一个运动体模 | 比较合成双能减影(sDES)图像与真实双能减影(DES)图像在图像质量和追踪结果上的差异 | 运动体模和20名肺癌患者的X射线图像 | 数字病理 | 肺癌 | 双能减影(DES)和U-net神经网络 | U-net | X射线图像 | 20名肺癌患者和1个运动体模,共7193张图像对 |
1273 | 2025-07-19 |
An open-source deep learning framework for respiratory motion monitoring and volumetric imaging during radiation therapy
2025-Jul, Medical physics
IF:3.2Q1
DOI:10.1002/mp.18015
PMID:40665474
|
研究论文 | 开发了一个名为Voxelmap的深度学习框架,用于实时图像引导放射治疗中的呼吸运动监测和体积成像 | Voxelmap框架能够利用标准临床环境中已有的数据和资源实现3D呼吸运动估计和体积成像,且可适应其他成像模式如MRI-Linacs,与现有方法相比,它鼓励保持拓扑结构和可逆性的微分同胚映射 | 在某些网络架构下,目标质心误差较大,如网络B和C在基于X射线的肺癌患者数据中表现出较大的误差 | 开发一种经济实惠的实时图像引导放射治疗工具 | 呼吸运动监测和体积成像在放射治疗中的应用 | 数字病理 | 肺癌 | 深度学习 | CNN | 图像 | 使用XCAT和CoMBAT数字幻影以及SPARE Grand Challenge数据集提供合成和患者数据 |
1274 | 2025-07-19 |
Automated Detection of Gibbon Calls From Passive Acoustic Monitoring Data Using Convolutional Neural Networks in the "Torch for R" Ecosystem
2025-Jul, Ecology and evolution
IF:2.3Q2
DOI:10.1002/ece3.71678
PMID:40666685
|
研究论文 | 本文提出了一种使用R环境中的'Torch for R'生态系统和卷积神经网络(CNNs)从被动声学监测数据中自动检测长臂猿叫声的方法 | 首次在R编程环境中实现了基于深度学习的声学信号自动检测方法,并比较了六种CNN架构在两种长臂猿叫声检测上的性能 | 不同架构的性能表现依赖于物种和测试数据集,没有统一的最高性能模型 | 开发一种可在R环境中运行的自动声学信号检测方法,用于生态监测 | 两种长臂猿的叫声(北部灰长臂猿和南部黄颊冠长臂猿的雌性叫声) | 机器学习 | NA | 被动声学监测(PAM) | CNN | 音频 | 来自马来西亚丹浓谷保护区和柬埔寨Keo Seima野生动物保护区的两个自主录音单元网格的数据 |
1275 | 2025-07-19 |
Classification of Biscuit Quality With Deep Learning Algorithms
2025-Jul, Journal of food science
IF:3.2Q2
DOI:10.1111/1750-3841.70379
PMID:40676924
|
研究论文 | 本研究旨在通过使用深度学习模型检测缺陷产品,减少饼干生产质量控制过程中的时间、成本和人为错误 | 采用深度学习模型(如EfficientNet、ResNet)进行饼干质量分类,并在工业食品生产中实现高效精确的质量控制 | 未提及数据集的具体规模或多样性,可能影响模型的泛化能力 | 减少饼干生产质量控制过程中的时间、成本和人为错误 | 饼干的质量分类(缺陷与无缺陷,以及多类别分类如过熟、纹理缺陷和不完整) | 计算机视觉 | NA | 深度学习 | EfficientNet, ResNet, XceptionNet, MobileNet | 图像 | 两个数据集(一个用于二分类,一个用于多分类),具体样本数量未提及 |
1276 | 2025-07-19 |
Deep Learning-Based MRI Analysis Reveals Lewy Body Co-Pathology Accelerates Brain Aging in Alzheimer's Disease
2025-Jun-26, Research square
DOI:10.21203/rs.3.rs-6874970/v1
PMID:40678251
|
研究论文 | 本研究利用深度学习分析MRI扫描,揭示了路易体共病理加速阿尔茨海默病患者脑老化 | 首次结合脑脊液α-突触核蛋白种子扩增实验和深度学习MRI分析,量化路易体共病理对阿尔茨海默病神经退行性变的影响 | 研究样本主要来自认知障碍患者,可能无法完全代表疾病早期变化 | 探究路易体病理与阿尔茨海默病共存的协同效应对脑老化的影响 | 4,355名认知正常个体和803名认知障碍患者的MRI数据 | 数字病理学 | 阿尔茨海默病 | MRI扫描和脑脊液α-突触核蛋白种子扩增实验(SAA) | 深度学习模型 | MRI图像 | 4,355名认知正常个体用于模型训练,803名认知障碍患者用于应用分析 |
1277 | 2025-07-19 |
FIR-LSTM: An Explainable Deep Learning Framework for Predicting Iatrogenic Withdrawal Syndrome in Pediatric Intensive Care Units
2025-Jun-25, Research square
DOI:10.21203/rs.3.rs-6787167/v1
PMID:40678213
|
研究论文 | 开发了一种可解释的深度学习框架FIR-LSTM,用于预测儿科重症监护病房中的医源性戒断综合征 | 结合单向多层LSTM网络和层间相关性传播(LRP)技术,提高了模型的解释性和预测性能 | 研究仅基于电子健康记录(EHRs),未考虑其他可能的临床因素 | 早期预测儿科ICU患者医源性戒断综合征(IWS)风险,以促进及时干预 | 儿科重症监护病房患者 | 机器学习 | 医源性戒断综合征 | 层间相关性传播(LRP) | LSTM | 电子健康记录(EHRs) | NA |
1278 | 2025-07-19 |
AVN: A Deep Learning Approach for the Analysis of Birdsong
2025-Jun-22, bioRxiv : the preprint server for biology
DOI:10.1101/2024.05.10.593561
PMID:39229184
|
研究论文 | 本文介绍了一种名为AVN的深度学习行为分析流程,用于斑胸草雀等鸣禽学习发声的分析 | 开发了无需额外训练数据即可跨多个动物群体高精度注释鸣声的深度学习流程,并生成可解释的特征集来描述鸣声的语法、时间和声学特性 | NA | 通过标准化表型和学习结果的映射,促进和加速对发声行为的研究,从而更好地将行为与潜在的神经过程联系起来 | 斑胸草雀的鸣声 | 深度学习 | NA | 深度学习 | NA | 音频数据 | 多个研究小组和实验中的斑胸草雀鸣声数据 |
1279 | 2025-07-19 |
Development and validation of a deep learning-based automatic classification algorithm for the medial temporal lobe atrophy score using a multimodality cascade transformer
2025-Jun-17, Clinical radiology
IF:2.1Q2
DOI:10.1016/j.crad.2025.106993
PMID:40675115
|
research paper | 开发并验证了一种基于深度学习的自动分类算法,用于认知障碍患者内侧颞叶萎缩(MTA)评分的分类 | 使用多模态级联Transformer开发深度学习模型,自动化MTA评分分类 | 模型性能在深度学习和机器学习方法之间相似,未显示出显著优势 | 开发并验证自动分类算法以评估认知障碍患者的MTA评分 | 认知障碍患者 | digital pathology | geriatric disease | deep learning, machine learning | Transformer | image | 训练数据集1694名患者,内部测试数据集297名患者,外部测试数据集400名患者 |
1280 | 2025-07-19 |
Regulatory risk loci link disrupted androgen response to pathophysiology of Polycystic Ovary Syndrome
2025-Jun-11, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.03.26.25324630
PMID:40196246
|
研究论文 | 本研究整合分子和表观基因组注释,利用深度学习框架预测多囊卵巢综合征(PCOS)风险变异的细胞类型特异性调控效应 | 使用深度学习模型预测PCOS风险变异的调控效应,揭示这些变异如何影响关键转录因子结合位点,从而调控促性腺激素信号、卵泡生成和类固醇生成 | 研究主要基于预测模型,需要进一步的实验验证来确认这些调控效应的生物学意义 | 解析PCOS的复杂遗传景观,揭示易感位点如何驱动分子机制 | 多囊卵巢综合征(PCOS)风险变异及其在脑和内分泌细胞类型中的调控效应 | 机器学习 | 多囊卵巢综合征 | 深度学习(DL) | 深度学习模型 | 表观基因组数据 | NA |