深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 31416 篇文献,本页显示第 1261 - 1280 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1261 2025-09-12
Deep learning reconstruction for detection of liver lesions at standard-dose and reduced-dose abdominal CT
2025-Oct, European radiology IF:4.7Q1
研究论文 本研究比较了深度学习重建(DLR)与迭代重建(IR)在标准剂量和低剂量腹部CT中检测肝脏病变的诊断性能 首次系统评估DLR在降低CT辐射剂量方面的潜力,并重点关注小尺寸肝脏病变的检测效果 样本量较小(44名参与者),仅针对胃肠道和胰腺腺癌肝转移患者,结果可能不适用于其他类型病变 评估深度学习重建技术在CT扫描中降低辐射剂量同时保持诊断准确性的可行性 已知有肝转移的胃肠道和胰腺腺癌患者 医学影像分析 肝脏肿瘤 CT扫描,深度学习重建(DLR),迭代重建(IR) 深度学习 医学影像 44名参与者(平均年龄66岁,28名男性),包含348个≤20mm的肝脏病变
1262 2025-09-12
Deep learning enhances reliability of dynamic contrast-enhanced MRI in diffuse gliomas: bypassing post-processing and providing uncertainty maps
2025-Oct, European radiology IF:4.7Q1
研究论文 提出并评估一种深度学习模型,直接从DCE-MRI估计药代动力学参数图和不确定性,提升弥漫性胶质瘤成像的可靠性 使用时空概率深度学习模型绕过传统后处理步骤(如动脉输入函数估计),直接生成高可靠性药代动力学参数图并提供不确定性估计 单中心回顾性研究,样本量有限(329例患者),需进一步多中心验证 提升动态对比增强MRI(DCE-MRI)在弥漫性胶质瘤中的可靠性和一致性 成人型弥漫性胶质瘤患者 医学影像分析 脑胶质瘤 DCE-MRI,深度学习 时空概率模型 医学影像(MRI) 329例患者(平均年龄55±15岁,197名男性)
1263 2025-09-12
Deploying a novel deep learning framework for segmentation of specific anatomical structures on cone-beam CT
2025-Oct, Oral radiology IF:1.6Q3
研究论文 本研究开发了一种基于深度学习的新型框架,用于在锥束CT图像上自动分割特定解剖结构 采用nnUNetv2框架实现高精度解剖结构分割,在牙科CBCT图像处理中表现出色 样本量相对较小(70名患者),且下颌管分割性能相对较低 通过深度学习算法自动预测CBCT图像中的解剖结构,以增强诊断和治疗规划流程 70名患者的CBCT图像数据,包含鼻腔、上颌窦、腭前管、下颌管等解剖结构 计算机视觉 NA 锥束CT成像,深度学习分割 nnUNetv2 医学影像 70名患者的CBCT数据,共28,350个切片(每例405个切片)
1264 2025-09-12
Radiomics, machine learning, and deep learning for hippocampal sclerosis identification: a systematic review and diagnostic meta-analysis
2025-Oct, Epilepsy & behavior : E&B IF:2.3Q2
系统综述与诊断性Meta分析 本文系统回顾并整合了基于人工智能和影像组学方法用于海马硬化识别的诊断性能研究 首次通过Meta分析比较不同AI模型(包括SVM、CNN等)在识别海马硬化中的表现,并发现单独使用AI优于AI与影像组学结合 仅纳入6项研究,存在较高的异质性(I² > 69%) 提升颞叶癫痫中海马硬化的非侵入性诊断准确性 海马硬化(HS)患者,特别是内侧颞叶癫痫(MTLE)患者 医学影像分析 癫痫 机器学习与深度学习 SVM, CNN, LR MRI影像数据 Meta分析共纳入6项研究(具体样本量未在摘要中提供)
1265 2025-09-12
TPC-GCN: Deep learning for pulse pattern classification in traditional Chinese medicine
2025-Oct, Medical engineering & physics IF:1.7Q3
研究论文 提出一种基于深度学习的脉象分类方法TPC-GCN,用于中医脉搏模式识别 采用增强SMOTE进行数据增强,构建多配置图数据结构,设计多通道轻量图卷积网络,通过注意力加权融合提升分类性能 NA 提升中医脉象分类的准确性与客观化 中医脉搏信号 机器学习 中医诊断 SMOTE数据增强、多域特征提取、图卷积网络 GCN(图卷积网络) 脉搏信号数据 NA
1266 2025-09-12
Beyond explainable AI: Enhancing trust and robustness in machine learning for sleep apnea diagnosis
2025-Oct, Sleep medicine reviews IF:11.2Q1
评论 本文扩展了对睡眠呼吸暂停诊断中机器学习可解释性工具的批判,提出结合无监督ML和非线性非参数统计方法的综合策略以增强临床信任 主张超越传统XAI方法,通过无监督学习和统计方法结合来验证特征重要性并减少模型偏差 未提供具体实验验证或实际临床数据支持所提出方法的有效性 提升机器学习在睡眠呼吸暂停诊断中的可信度和鲁棒性 睡眠呼吸暂停诊断的机器学习模型及其特征解释方法 machine learning 睡眠呼吸暂停 无监督ML(特征聚合、高变基因选择),非线性非参数统计方法(如Spearman相关) NA NA NA
1267 2025-09-12
Clinical Implementation of Inspiratory-Expiratory Chest CT: Defining Quality Criteria for Diagnostic Quality and Detection of Concurrent FEV1 Decline following Lung Transplantation
2025-Oct, Radiology. Cardiothoracic imaging
研究论文 本研究通过定义呼气CT诊断质量评估标准,探讨定量空气潴留对肺移植后慢性移植物功能障碍(CLAD)的预测性能 首次提出基于气管形态的呼气CT质量评估标准,并验证其与肺功能测量的相关性 敏感性较低(34.0%),样本仅来自单一机构 评估呼气CT质量对定量空气潴留预测CLAD进展的影响 肺移植术后患者 数字病理 肺移植相关并发症 CT扫描、肺功能检测 深度学习算法 CT图像、肺功能数据 192例肺移植患者的603次吸呼气CT扫描
1268 2025-09-12
Toroidal indentation for measuring cell and tissue mechanical anisotropy
2025-Sep-15, Acta biomaterialia IF:9.4Q1
研究论文 本研究开发了一种基于环形压痕和深度学习模型的通用方法,用于测量从宏观组织到单细胞尺度生物材料的各向异性弹性模量 提出了使用环形压头结合有限元建模和深度学习分析来量化生物材料机械各向异性的新方法,解决了传统各向同性假设的局限性 方法基于线性不可压缩横观各向同性材料模型,可能不适用于高度非线性或可压缩材料 开发能够测量生物材料机械各向异性的通用压痕方法 各向异性肌肉组织、细胞单层和极化单细胞 生物力学 NA 有限元建模、深度学习分析、环形压痕技术 深度学习模型 机械加载曲线数据 NA
1269 2025-09-12
Application of Convolutional Neural Network Image Analysis and Machine Learning to Basic Blood Tests for Intelligent Diagnostic Assistance
2025-Sep-11, International journal of laboratory hematology IF:2.2Q3
研究论文 开发基于卷积神经网络和机器学习的血液细胞图像识别与诊断辅助系统,用于智能血液疾病诊断 结合外周血细胞形态图像识别与全血细胞计数数据,构建诊断辅助深度学习系统,实现高精度细胞分类和疾病区分 研究仅基于特定血液分析仪(Sysmex XN-9000)数据,未涉及其他设备或多中心验证 评估血液细胞图像识别深度学习系统及诊断辅助系统在常规检查中的临床性能 健康受试者及ALL、AML、ML、MPN、MDS患者的血液样本 计算机视觉 血液疾病 深度学习图像分析、血液细胞形态学识别 CNN 图像、数值数据 1,476,727张血液细胞图像用于训练,128,716张图像(来自589份涂片)用于评估
1270 2025-09-12
Artificial intelligence in gastric cancer: a systematic review of machine learning and deep learning applications
2025-Sep-11, Abdominal radiology (New York)
系统综述 本文系统评估了机器学习和深度学习在胃癌管理中的应用、性能及局限性 全面总结了AI在胃癌早期检测、诊断、治疗规划和预后预测中的跨模态应用性能 存在算法偏差、数据集多样性不足、可解释性差及临床整合障碍 评估ML和DL模型在胃癌管理中的表现与应用 胃癌患者的临床影像和多模态数据 数字病理 胃癌 机器学习、深度学习 CNN 内镜图像、CT影像、病理图像、多模态数据 59项符合纳入标准的研究
1271 2025-09-12
Application of Deep Learning for Predicting Hematoma Expansion in Intracerebral Hemorrhage Using Computed Tomography Scans: A Systematic Review and Meta-Analysis of Diagnostic Accuracy
2025-Sep-11, La Radiologia medica
系统综述与荟萃分析 本文系统评估了基于深度学习的CT扫描模型在预测脑出血患者血肿扩张中的诊断准确性 首次对深度学习模型在脑出血血肿扩张预测中的应用进行系统性定量综合分析,并比较了纯深度学习模型与混合模型的性能差异 纳入研究存在异质性,部分亚组分析显示方法学质量差异可能影响结果 评估深度学习模型通过CT图像预测脑出血患者血肿扩张的诊断效能 脑出血患者 医学影像分析 脑出血 深度学习,CT影像分析 深度学习网络 CT图像 22项研究(其中11项用于纯DL分析,6项用于混合DL分析)
1272 2025-09-12
Identifying 14-3-3 interactome binding sites with deep learning
2025-Sep-10, Digital discovery IF:6.2Q1
研究论文 开发深度学习框架预测蛋白质与14-3-3蛋白的结合位点 首次构建集成深度学习模型预测14-3-3相互作用组结合位点,尤其针对内在无序蛋白 模型在外部序列上平衡准确率为75%,仍有提升空间;实验验证仅覆盖8个预测肽段 预测蛋白质与14-3-3蛋白的结合位点以理解细胞信号网络 14-3-3蛋白及其相互作用蛋白质(约300个序列) 生物信息学 阿尔茨海默病(涉及tau蛋白结合) 深度学习、X射线晶体学、分子动力学模拟 集成深度学习模型 蛋白质序列数据 约300个医学相关蛋白质序列,实验验证8个预测肽段
1273 2025-09-12
Enhancing Protein Structure Learning using a Size-Guided Conditional Mixture-of-Experts
2025-Sep-10, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出一种基于蛋白质大小引导的条件混合专家模型,用于提升蛋白质结构深度学习性能 首次将蛋白质大小作为先验知识引入深度学习框架,通过条件混合专家模型自适应激活子网络 NA 改进蛋白质结构深度学习方法,提升蛋白质性质预测精度 蛋白质结构与性质 机器学习 NA 深度学习 条件混合专家模型(Conditional Mixture-of-Experts) 蛋白质结构表示 在8个任务、2种蛋白质表示形式、3种数据集划分共48种测试设置上进行验证
1274 2025-09-12
MultiFusion2HPO: A Multimodal Deep Learning Approach for Enhancing Human Protein-Phenotype Association Prediction
2025-Sep-10, IEEE transactions on computational biology and bioinformatics
研究论文 提出一种多模态深度学习模型MultiFusion2HPO,用于提升人类蛋白质与表型关联预测的准确性 整合五种关键模态数据(文本、序列、PPI网络、GO注释和基因表达)并采用先进深度学习表示方法 NA 提升人类蛋白质-表型关联预测的准确性以促进药物开发和精准医疗 人类基因(蛋白质)与临床表型(HPO标准化表型) 自然语言处理 NA TFIDF-D2V, BioLinkBERT, InterPro, ESM2 多模态深度学习模型 文本、序列、网络、注释数据、基因表达数据 基准数据集(具体数量未说明)
1275 2025-09-12
Enhancing Automated Seizure Detection via Self-Calibrating Spatial-Temporal EEG Features with SC-LSTM
2025-Sep-10, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出一种新型混合深度学习架构SC-LSTM,通过自适应时空特征提取增强癫痫发作自动检测 整合自校准空间特征重建模块(SCConvNet)和双向LSTM网络,实现并行时空特征提取,显著提升对患者特异性EEG变异的捕捉能力 仅在新生儿EEG数据集上验证,未明确说明模型在其他年龄组或癫痫类型的泛化能力 开发高精度、稳定的自动化癫痫发作检测方法以支持个体化诊断 新生儿癫痫患者的脑电图(EEG)信号 机器学习 癫痫 脑电图(EEG)分析,K折交叉验证 SC-LSTM(自校准卷积网络与双向LSTM的混合架构) 多通道时间序列EEG信号 两个真实世界新生儿EEG数据集(具体样本量未明确说明)
1276 2025-09-12
UPFP-SG: A New Benchmark for Unilateral Peripheral Facial Paralysis Severity Grading
2025-Sep-10, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 提出了一个新的单侧周围性面瘫严重程度分级基准UPFP-SG,包括数据集和评估方法 建立了首个公开的面瘫数据集并改进了主观评估系统,能够分析不同面部神经分支的麻痹程度 NA 开发自动化的面瘫严重程度评估方法,解决临床诊断主观性强的问题 单侧周围性面瘫患者 计算机视觉 面瘫 深度学习 回归模块 面部图像 NA
1277 2025-09-12
Deep learning methods and applications in single-cell multimodal data integration
2025-Sep-10, Molecular omics IF:3.0Q3
综述 本文回顾了深度学习在单细胞多模态数据整合中的方法与应用 探讨了基于VAE和GNN等神经网络框架解决数据批次效应、稀疏性和模态对齐等计算挑战的前沿方法 模型可解释性、可扩展性及跨数据集泛化能力仍存在挑战 整合多模态单细胞组学数据以解析细胞异质性和基因调控机制 单细胞多模态数据 机器学习 NA 单细胞多组学技术 VAE, GNN, transformer 单细胞多模态组学数据 NA
1278 2025-09-12
InterVelo: A Mutually Enhancing Model for Estimating Pseudotime and RNA Velocity in Multi-Omic Single-Cell Data
2025-Sep-10, Bioinformatics (Oxford, England)
研究论文 提出InterVelo深度学习框架,用于在多组学单细胞数据中同时估计伪时间和RNA速率 通过无监督细胞时间引导RNA速率估计,同时利用RNA速率优化伪时间方向,实现双向增强学习 NA 改进单细胞数据中转录动态的推断精度 多组学单细胞数据 计算生物学 NA 单细胞多组学测序 深度学习框架 单细胞多组学数据 模拟和真实数据集(未指定具体样本数量)
1279 2025-09-12
Attention Gated-VGG with deep learning-based features for Alzheimer's disease classification
2025-Sep-10, Neurodegenerative disease management IF:2.3Q3
研究论文 提出基于注意力门控VGG和深度学习的特征提取方法用于阿尔茨海默病分类 结合WOA-based ResNet特征提取和注意力门控VGG模型,在AD分类中实现高精度 NA 早期检测和分类阿尔茨海默病 阿尔茨海默病患者影像数据 计算机视觉 阿尔茨海默病 深度学习,图像预处理,数据增强 Attention Gated-VGG, CNN, ResNet 图像 NA
1280 2025-09-12
Explainable Deep Learning Framework for Classifying Mandibular Fractures on Panoramic Radiographs
2025-Sep-10, The Journal of craniofacial surgery IF:1.0Q3
研究论文 开发基于全景X光片的可解释深度学习框架,用于自动分类下颌骨骨折 结合新颖的临床相关分类系统和可解释AI技术(Grad-CAM和LIME)提升模型决策透明度 需要更大规模、多机构数据集进一步验证泛化能力 实现下颌骨骨折的自动分类以辅助颌面创伤诊疗 下颌骨骨折患者 计算机视觉 颌面创伤 全景X光成像 CNN 图像 800张来自面部创伤患者的全景X光片
回到顶部