深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24513 篇文献,本页显示第 12901 - 12920 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
12901 2024-11-09
Revising Reflection Assignments to Align With Clinical Judgment Measurement Model Language: Maximizing Critical Thinking, Feedback, and Measurement in Simulation
2024 Nov-Dec 01, Nursing education perspectives IF:0.9Q3
研究论文 本文探讨了如何通过修订反思作业模板,使其与临床判断测量模型(CJMM)的语言相一致,从而最大化模拟中的批判性思维、反馈和测量 本文创新性地将临床判断测量模型(CJMM)的语言融入到模拟反思作业中,以促进学生对临床判断的深入理解和自我评估 本文仅在初步质量改进试点研究中验证了改进效果,尚未在大规模应用中进行验证 研究目的是通过修订反思作业模板,提升学生在模拟中的批判性思维和临床判断能力 研究对象为护理专业的学生及其在模拟中的反思作业 NA NA NA NA NA 初步质量改进试点研究中的学生数量未明确提及
12902 2024-11-09
Efficient urinary stone type prediction: a novel approach based on self-distillation
2024-10-10, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于自蒸馏架构的高效尿石类型预测方法,通过特征融合和坐标注意力模块(CAM)提高了模型的分类准确性和计算效率 本文的创新点在于改进了自蒸馏架构,结合特征融合和坐标注意力模块,实现了更有效的知识传递,避免了模型压缩带来的额外计算开销和性能下降 NA 本文的研究目的是开发一种高效且准确的尿石类型预测方法,以帮助临床医生制定更精确的治疗方案 本文的研究对象是尿石症患者的CT图像 计算机视觉 泌尿系统疾病 自蒸馏 NA 图像 本文使用了专有数据集和两个公共数据集进行验证
12903 2024-11-09
Development and Validation of a Computed Tomography-Based Model for Noninvasive Prediction of the T Stage in Gastric Cancer: Multicenter Retrospective Study
2024-Oct-09, Journal of medical Internet research IF:5.8Q1
研究论文 本研究开发并验证了一种基于计算机断层扫描(CT)的模型,用于非侵入性预测胃癌的T分期 本研究首次结合深度学习和放射组学来预测胃癌的T分期 本研究仅在回顾性数据集上进行了验证,未来需要在更多中心和前瞻性数据集上进行验证 开发一种基于CT的模型,通过放射组学和深度学习自动预测胃癌的T分期 胃癌患者的T分期 数字病理学 胃癌 放射组学 混合模型 图像 771名胃癌患者
12904 2024-11-09
Deep learning models for the prediction of acute postoperative pain in PACU for video-assisted thoracoscopic surgery
2024-Oct-07, BMC medical research methodology IF:3.9Q1
研究论文 本研究开发了一种深度学习模型,用于预测视频辅助胸腔镜手术后急性术后疼痛 本研究首次将图注意力网络(GAT)和图Transformer网络(GTN)结合,构建了DoseFormer模型,用于预测术后急性疼痛 本研究仅使用了回顾性观察数据,未来需要前瞻性研究验证模型的有效性 开发一种深度学习算法,用于预测术后急性疼痛 视频辅助胸腔镜手术后的患者 机器学习 NA 图注意力网络(GAT)和图Transformer网络(GTN) DoseFormer模型 患者信息和手术期间的生命体征数据 共纳入1758名患者,数据清洗后剩余1552名患者,其中训练集931名,测试集621名
12905 2024-08-07
Deep learning assisted biomarker development in patients with chronic hepatitis B: Editorial on "Prognostic role of computed tomography analysis using deep learning algorithm in patients with chronic hepatitis B viral infection"
2024-Oct, Clinical and molecular hepatology IF:14.0Q1
NA NA NA NA NA NA NA NA NA NA NA NA
12906 2024-11-09
A pathology foundation model for cancer diagnosis and prognosis prediction
2024-Oct, Nature IF:50.5Q1
研究论文 本文提出了一种名为CHIEF的病理学基础模型,用于癌症诊断和预后预测 CHIEF模型通过两种互补的预训练方法,提取了多样化的病理图像特征,具有更强的泛化能力 NA 开发一种通用的机器学习框架,用于提取病理图像特征,以进行系统的癌症评估 癌症诊断和预后预测 数字病理学 NA 机器学习 基础模型 图像 60,530张全切片图像,涵盖19个解剖部位,验证使用了19,491张来自32个独立切片集的图像
12907 2024-11-09
Comparative analysis of advanced deep learning models for predicting evapotranspiration based on meteorological data in bangladesh
2024-Oct, Environmental science and pollution research international
研究论文 本研究比较了四种深度学习模型(CNN、GRU、LSTM、CNN-GRU)在基于孟加拉国气象数据预测蒸散量方面的表现 首次使用混合CNN-GRU模型来估计参考蒸散量,该算法在此领域尚未被广泛应用 NA 预测孟加拉国基于有限气象数据的每日蒸散量 蒸散量预测 机器学习 NA 深度学习 CNN, GRU, LSTM, CNN-GRU 气象数据 涉及两个站点(Rangpur和Sreemangal)的数据
12908 2024-11-09
Predicting disease-associated microbes based on similarity fusion and deep learning
2024-Sep-23, Briefings in bioinformatics IF:6.8Q1
研究论文 本文提出了一种基于深度学习的计算方法SGJMDA,用于预测微生物与疾病之间的关联 SGJMDA通过融合多种相似性和使用图卷积网络提取特征信息,构建异构网络并计算嵌入的线性相关系数,从而推断潜在的微生物-疾病关联 NA 提高对疾病发病机制和治疗的理解,为生物医学筛选提供指导 微生物与疾病之间的关联 生物信息学 NA 深度学习 图卷积网络 网络数据 NA
12909 2024-11-09
DualNetGO: a dual network model for protein function prediction via effective feature selection
2024-07-01, Bioinformatics (Oxford, England)
研究论文 本文提出了一种双网络模型DualNetGO,用于通过有效特征选择进行蛋白质功能预测 DualNetGO模型通过分类器和选择器组件,能够从不同来源(如PPI网络图嵌入、蛋白质域和亚细胞定位信息)中有效选择特征,从而提高蛋白质功能预测的准确性 NA 开发一种新的模型,通过有效特征选择提高蛋白质功能预测的准确性 人类和小鼠的蛋白质功能预测 机器学习 NA 图嵌入 双网络模型 图嵌入、蛋白质域、亚细胞定位信息 人类和小鼠数据集
12910 2024-11-09
Automatic cephalometric landmark identification with artificial intelligence: An umbrella review of systematic reviews
2024-07, Journal of dentistry IF:4.8Q1
综述 本文对人工智能在自动头影测量标志点识别中的表现进行了伞形综述 本文通过伞形综述评估了人工智能在2D和3D头影测量标志点识别中的性能 人工智能无法以相同的准确性识别各种头影测量标志点,且大多数研究基于错误的2毫米误差阈值 评估人工智能在自动头影测量标志点识别中的表现 2D和3D头影测量标志点的自动识别 计算机视觉 NA 机器学习 NA 图像 11篇符合条件的系统综述
12911 2024-11-09
Empowering brain cancer diagnosis: harnessing artificial intelligence for advanced imaging insights
2024-06-25, Reviews in the neurosciences IF:3.4Q2
综述 本文探讨了人工智能在脑癌影像诊断中的应用及其对诊断、预后和治疗的影响 强调了智能应用在标准化程序和个性化治疗方面的巨大潜力,从而改善患者预后 存在数据质量、可用性、可解释性、透明度和伦理等方面的挑战 探索人工智能在脑癌影像中的应用及其对诊断、预后和治疗的影响 脑癌的诊断、预后和治疗 计算机视觉 脑癌 深度学习和因果学习 NA 影像 NA
12912 2024-11-09
Diagnostic machine learning applications on clinical populations using functional near infrared spectroscopy: a review
2024-06-25, Reviews in the neurosciences IF:3.4Q2
综述 本文综述了功能性近红外光谱(fNIRS)与机器学习(ML)在临床人群中诊断分类的应用 这是首次报道使用fNIRS进行诊断机器学习应用的综述 样本量与准确性之间存在显著负相关 探讨fNIRS与ML在精神疾病诊断中的应用 精神疾病患者,包括精神分裂症、注意缺陷多动障碍和自闭症谱系障碍 机器学习 精神疾病 功能性近红外光谱(fNIRS) 支持向量机(SVM)和深度学习(DL) 近红外光谱数据 45项研究,其中8项研究招募了超过100名参与者
12913 2024-11-09
Public participation in healthcare students' education: An umbrella review
2024-02, Health expectations : an international journal of public participation in health care and health policy IF:3.0Q2
综述 本文综述了公众参与医疗学生教育的相关文献,探讨了公众参与对学生、公众、课程和未来职业实践的影响 本文通过综合现有文献,揭示了公众参与在医疗学生教育中的潜在益处和挑战 本文仅基于过去10年内的文献综述,可能未能涵盖所有相关研究 旨在综合分析公众参与医疗学生教育的文献,评估其对学生、公众、课程和医疗系统的影响 公众参与医疗学生教育的文献综述 NA NA NA NA NA NA
12914 2024-11-09
Protein-protein and protein-nucleic acid binding site prediction via interpretable hierarchical geometric deep learning
2024-Jan-02, GigaScience IF:11.8Q1
研究论文 本文设计了一种名为GraphRBF的分层几何深度学习模型,用于预测蛋白质-蛋白质和蛋白质-核酸的结合位点 GraphRBF通过增强图神经网络描述物理化学信息交互,并通过优先径向基函数神经网络表征残基的空间分布,从而学习残基的结合模式 NA 提高蛋白质-蛋白质和蛋白质-核酸结合位点的预测准确性,并为疾病诊断和药物设计提供技术指导 蛋白质-蛋白质和蛋白质-核酸的结合位点 机器学习 NA 分层几何深度学习 图神经网络 蛋白质结构数据 涉及SARS-CoV-2 omicron spike蛋白的已知表位和多个潜在结合区域
12915 2024-11-09
Efficient differential privacy enabled federated learning model for detecting COVID-19 disease using chest X-ray images
2024, Frontiers in medicine IF:3.1Q1
研究论文 本文介绍了一种基于差分隐私的联邦学习模型,用于通过胸部X光图像检测COVID-19疾病 提出了一个自适应差分隐私的联邦学习模型,该模型能够根据实时数据敏感性分析动态调整隐私级别,提高了联邦学习在多样化医疗环境中的实用性 未明确提及 开发一种能够保护数据隐私和安全的COVID-19检测模型 COVID-19疾病的检测 机器学习 COVID-19 差分隐私、联邦学习 联邦学习模型 图像 未明确提及
12916 2024-11-09
Few-shot learning for inference in medical imaging with subspace feature representations
2024, PloS one IF:2.9Q1
研究论文 本文探讨了在医学影像分析中使用子空间特征表示进行少样本学习的两种替代方法 提出了基于判别分析和非负矩阵分解的两种新方法,并在低维度下展示了它们相对于SVD的显著改进 文章未详细讨论在高维度下的性能表现 解决医学影像分析中由于数据量少而难以应用深度学习的问题 医学影像数据 计算机视觉 NA 判别分析(DA),非负矩阵分解(NMF) NA 图像 14个不同数据集,涵盖11种不同疾病类型
12917 2024-11-09
Non-small cell lung cancer detection through knowledge distillation approach with teaching assistant
2024, PloS one IF:2.9Q1
研究论文 本文通过教学助手框架中的知识蒸馏技术,利用CT扫描图像进行非小细胞肺癌的分类 采用教学助手框架,通过知识蒸馏技术提高学生模型的性能,并在边缘设备上实现高效的训练和预测 未提及 提高非小细胞肺癌分类模型的性能和效率 非小细胞肺癌的分类 计算机视觉 肺癌 知识蒸馏 CNN, VGG19, ResNet152v2, Swin, CCT, ViT 图像 未提及
12918 2024-11-09
Fully Bayesian VIB-DeepSSM
2023-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
研究论文 本文提出了一种全贝叶斯变分信息瓶颈深度形状模型(Fully Bayesian VIB-DeepSSM),用于从3D图像中预测解剖结构的形状,并进行不确定性量化 本文的创新点在于提出了全贝叶斯变分信息瓶颈框架,结合了具体丢弃和批量集成两种可扩展实现方法,并通过多模态边缘化进一步增强了不确定性校准 NA 本文的研究目的是改进从3D图像中预测解剖结构形状的不确定性量化方法 本文的研究对象是解剖结构的形状预测和不确定性量化 计算机视觉 NA 变分信息瓶颈 全贝叶斯神经网络 3D图像 合成形状和左心房数据
12919 2024-11-09
A method using deep learning to discover new predictors from left-ventricular mechanical dyssynchrony for CRT response
2023-02, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology IF:3.0Q2
研究论文 本研究利用深度学习技术从左心室机械不同步性的极坐标图中发现新的预测因子,以帮助选择可能对心脏再同步治疗有高反应的心衰患者 本研究首次使用自编码器技术从左心室机械不同步性的极坐标图中提取新的预测因子,并在外部验证中显示出良好的预测价值 本研究样本量较小,且仅在一个外部验证集中进行了验证,需要进一步的大规模多中心研究来验证其普适性 发现新的预测因子以提高心脏再同步治疗反应的预测准确性 左心室机械不同步性的极坐标图和心脏再同步治疗反应 机器学习 心血管疾病 自编码器技术 自编码器 图像 157名接受静息门控单光子发射计算机断层扫描心肌灌注成像的患者
12920 2024-11-08
In-vitro blood purification using tiny pinch holographic optical tweezers based on deep learning
2025-Jan-01, Biosensors & bioelectronics IF:10.7Q1
研究论文 本文介绍了一种基于深度学习的全息光学镊子用于体外血液净化的新方法 首次提出了可编程的非接触式血液净化系统,用于精确检测和提取血液成分 NA 开发一种高效的血液净化系统,用于精确分离血液成分 血液中的不同细胞和人工颗粒 计算机视觉 NA 全息光学镊子 深度学习模型 图像 新收集并标注的血液成分目标检测数据集
回到顶部