本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13101 | 2025-04-26 |
Evaluating the Accuracy of Deep Learning Models and Dental Postgraduate Students in Measuring Working Length on Intraoral Periapical X-rays: An In vitro Study
2025 Jan-Mar, Contemporary clinical dentistry
IF:0.9Q3
DOI:10.4103/ccd.ccd_274_24
PMID:40270870
|
research paper | 本研究评估并比较了深度学习模型与牙科研究生在测量根尖周X光片工作长度上的准确性 | 首次将深度学习模型应用于牙科根尖周X光片工作长度的测量,并与人类专家进行比较 | 研究样本仅包含单根牙的X光片,可能不适用于多根牙的情况 | 评估人工智能在牙科诊断影像中的准确性 | 单根牙的根尖周X光片 | digital pathology | dental disease | deep learning | CNN | image | 100张根尖周X光片 | NA | NA | NA | NA |
13102 | 2025-04-25 |
A short report on deep learning synergy for decentralized smart grid cybersecurity
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1557960
PMID:40270931
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13103 | 2025-04-26 |
AI-driven sleep apnea screening with overnight blood oxygen saturation: current practices and future directions
2025, Frontiers in digital health
IF:3.2Q2
DOI:10.3389/fdgth.2025.1510166
PMID:40271052
|
综述 | 本文综述了基于血氧饱和度(SpO)的睡眠呼吸暂停筛查的当前实践和未来方向 | 总结了SpO2信号在睡眠呼吸暂停筛查中的三种主要应用类别,并指出了该领域的两大研究空白 | 缺乏足够多样化的公开数据集,以及数据收集、信号预处理和模型基准测试的标准化协议缺失 | 评估基于SpO2信号的AI驱动睡眠呼吸暂停筛查方法的研究进展 | 已发表的关于SpO2信号用于睡眠呼吸暂停筛查的研究 | 机器学习 | 睡眠呼吸暂停 | SpO2监测 | machine learning/deep learning | 血氧饱和度信号 | 31篇纳入全文综述的出版物(从835篇初筛结果中筛选) | NA | NA | NA | NA |
13104 | 2025-04-26 |
Deep learning-based automatic segmentation of brain structures on MRI: A test-retest reproducibility analysis
2025, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2025.04.007
PMID:40271109
|
研究论文 | 本研究评估了基于深度学习的MRI脑结构自动分割在不同扫描仪类型和磁场强度下的可重复性 | 首次系统比较了1.5T和3T MRI扫描仪在深度学习脑分割中的表现差异 | 未考虑更多品牌或型号的扫描仪差异,样本来源未明确说明 | 评估MRI脑结构自动分割在不同扫描条件下的可重复性 | MRI扫描的脑结构图像 | 医学影像分析 | 脑部疾病 | 深度学习 | NA | MRI图像 | 未明确说明具体样本数量 | NA | NA | NA | NA |
13105 | 2025-10-07 |
What makes human cortical pyramidal neurons functionally complex
2024-Dec-19, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.17.628883
PMID:39763809
|
研究论文 | 提出功能性复杂度指数(FCI)框架,通过比较人类和大鼠皮层锥体神经元的功能复杂度,揭示人类神经元功能复杂性增强的结构-生物物理基础 | 首次提出基于深度学习的标准化功能性复杂度指数(FCI)来量化神经元输入输出复杂度,并系统比较不同物种神经元的功能差异 | 研究主要聚焦于皮层锥体神经元,未涵盖其他类型神经元;FCI框架需要进一步验证其普适性 | 探究人类皮层神经元功能复杂性的结构基础及其与认知能力的关系 | 人类和大鼠的皮层锥体神经元 | 计算神经科学 | NA | 深度学习,电生理记录,形态学分析 | 深度学习框架 | 神经元形态数据,电生理数据 | 人类和大鼠不同皮层层的锥体神经元 | 深度学习框架 | NA | 功能性复杂度指数(FCI) | NA |
13106 | 2025-10-07 |
Advances in artificial intelligence-based technologies for increasing the quality of medical products
2024-Nov-30, Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences
IF:2.5Q3
DOI:10.1007/s40199-024-00548-5
PMID:39613923
|
综述 | 概述人工智能技术在提高医疗产品质量方面的最新进展和应用 | 系统整合了AI在药物靶点预测、产品开发加速和质量提升等方面的创新应用 | 未涉及具体实施案例和量化效果分析 | 探讨AI技术在医疗产品质量提升和开发效率优化中的应用 | 医疗产品开发流程和质量控制 | 机器学习 | NA | 机器学习,深度学习 | NA | 生物医学数据,健康统计数据 | NA | NA | NA | NA | NA |
13107 | 2025-10-07 |
Evaluating Performance of Different RNA Secondary Structure Prediction Programs Using Self-cleaving Ribozymes
2024-Sep-13, Genomics, proteomics & bioinformatics
DOI:10.1093/gpbjnl/qzae043
PMID:39317944
|
研究论文 | 比较七种RNA二级结构预测工具在自切割核酶序列上的预测准确性 | 首次系统评估包括深度学习方法在内的多种RNA结构预测工具在不同复杂度任务中的表现 | 仅针对特定类别的自切割核酶序列进行评估,结果可能不适用于其他RNA类型 | 评估不同计算工具在预测RNA二级结构方面的性能差异 | 自切割核酶序列的RNA二级结构 | 生物信息学 | NA | RNA二级结构预测 | 深度学习,传统计算方法 | RNA序列数据 | 数十个自切割核酶序列 | NA | NA | 预测准确性 | NA |
13108 | 2025-10-07 |
Quantitative Three-Dimensional Imaging Analysis of HfO2 Nanoparticles in Single Cells via Deep Learning Aided X-ray Nano-Computed Tomography
2024-08-20, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.4c06953
PMID:39115329
|
研究论文 | 开发基于深度学习的X射线纳米计算机断层扫描方法,用于单细胞内HfO2纳米颗粒的三维定量分析 | 建立了针对单细胞3D纳米CT图像的超小物体分割方法,能够高灵敏度分析微小纳米颗粒 | 方法需要专业知识且耗时,传统批量数据分析准确性不确定 | 开发自动化深度学习辅助的纳米CT方法,用于定量分析癌细胞对超小金属纳米颗粒的摄取 | 人乳腺癌细胞系MCF-7和HfO2纳米颗粒 | 计算机视觉 | 乳腺癌 | X射线纳米计算机断层扫描 | 深度学习 | 3D图像 | 单细胞水平的纳米颗粒分析 | NA | NA | 灵敏度,准确性 | NA |
13109 | 2025-10-07 |
Sága, a Deep Learning Spectral Analysis Tool for Fungal Detection in Grains-A Case Study to Detect Fusarium in Winter Wheat
2024-08-13, Toxins
IF:3.9Q1
DOI:10.3390/toxins16080354
PMID:39195764
|
研究论文 | 开发了一种基于成像光谱和深度学习的镰刀菌感染小麦早期检测工具Sága | 结合预训练的YOLOv5和DeepMAC模型进行小麦穗部分割,并利用XGBoost分析高光谱信息实现镰刀菌感染检测 | 研究仅基于2021年单个实验田的数据,样本规模有限 | 开发可靠的现场特异性镰刀菌感染早期预警模型,确保粮食和饲料安全 | 冬小麦中的镰刀菌感染检测 | 计算机视觉 | 植物病害 | 成像光谱技术(高光谱成像) | YOLOv5, DeepMAC, XGBoost | 高光谱图像 | 两个实验田(接种镰刀菌的实验田52.5m×3m和对照组52.5m×3m) | NA | YOLOv5, DeepMAC | 准确率, F1分数 | NA |
13110 | 2025-10-07 |
Precision in Prevention and Health Surveillance: How Artificial Intelligence May Improve the Time of Identification of Health Concerns through Social Media Content Analysis
2024-Aug, Yearbook of medical informatics
DOI:10.1055/s-0044-1800736
PMID:40199301
|
综述 | 探讨人工智能通过社交媒体内容分析提升预防和健康监测精准度的潜力 | 系统评估AI技术在社交媒体健康监测中的创新应用,包括基于Transformer的主题建模和联邦学习等先进技术 | 仅纳入2023年发表的文献,样本量有限(最终筛选10篇文献),可能存在发表偏倚 | 提升健康监测的及时性和准确性,实现更主动有效的健康干预 | 社交媒体健康相关内容,包括自杀预防、心理健康、电子烟使用等公共卫生议题 | 自然语言处理 | 公共卫生 | 文献计量分析,社交媒体内容分析 | 机器学习,深度学习,自然语言处理 | 文本数据(社交媒体内容) | 89篇文献初步分析,最终筛选10篇相关研究 | Bibliometrix | Transformer | NA | NA |
13111 | 2025-10-07 |
Year 2023 in Biomedical Natural Language Processing: a Tribute to Large Language Models and Generative AI
2024-Aug, Yearbook of medical informatics
DOI:10.1055/s-0044-1800751
PMID:40199311
|
综述 | 对2023年生物医学自然语言处理领域的研究进展进行总结,重点分析大语言模型和生成式AI的应用趋势 | 系统梳理了2023年生物医学NLP领域的最佳论文评选过程,揭示了大语言模型在数据增强、领域适应和模型蒸馏方面的创新应用 | 仅基于两个文献数据库(Medline和ACL)进行分析,可能未覆盖该领域所有重要研究成果 | 总结2023年生物医学自然语言处理领域的研究趋势和最佳论文 | 2023年发表的2,148篇生物医学NLP研究论文 | 自然语言处理 | COVID-19, 癌症, 精神健康 | 自然语言处理, 深度学习 | 大语言模型, ChatGPT | 社交媒体内容, 电子健康记录 | 2,148篇论文 | NA | NA | NA | NA |
13112 | 2025-10-07 |
Molybdenum Disulfide-Assisted Spontaneous Formation of Multistacked Gold Nanoparticles for Deep Learning-Integrated Surface-Enhanced Raman Scattering
2024-07-09, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.4c00978
PMID:38913718
|
研究论文 | 开发了一种结合深度学习和表面增强拉曼散射的生物传感平台,用于通过人类泪液进行COVID-19现场筛查 | 利用二硫化钼辅助自发形成紧密堆积的三维金纳米颗粒结构,无需还原剂即可合成部分金纳米颗粒 | NA | 开发用于极低分析物浓度快速、低损伤、高通量无标记检测的生物传感平台 | 人类泪液中的冠状病毒疾病(COVID-19) | 生物传感 | COVID-19 | 表面增强拉曼散射(SERS) | CNN | 拉曼光谱数据 | NA | NA | 卷积神经网络 | NA | NA |
13113 | 2025-10-07 |
Sex estimation from maxillofacial radiographs using a deep learning approach
2024-06-01, Dental materials journal
IF:1.9Q4
DOI:10.4012/dmj.2023-253
PMID:38599831
|
研究论文 | 本研究使用深度学习模型从侧位头颅X光片中估计性别 | 首次将VGG16和DenseNet-121深度学习模型应用于侧位头颅X光片的性别估计,并通过显著性图分析模型关注区域 | 仅使用600张侧位头颅X光片,样本量有限;为回顾性研究 | 构建更高效可靠的性别估计方法 | 侧位头颅X光片 | 计算机视觉 | NA | X射线成像 | CNN | 医学影像 | 600张侧位头颅X光片 | NA | VGG16, DenseNet-121 | 准确率, 敏感度(召回率), 精确率, F1分数, ROC曲线下面积 | NA |
13114 | 2025-10-07 |
Machine learning and deep learning for the diagnosis and treatment of ankylosing spondylitis- a scoping review
2024-May, Journal of clinical orthopaedics and trauma
DOI:10.1016/j.jcot.2024.102421
PMID:38708092
|
综述 | 本文通过范围综述探讨机器学习和深度学习在强直性脊柱炎诊断与治疗中的应用现状 | 首次系统梳理2013-2023年间ML/DL在AS领域的应用,识别当前研究空白并提出未来方向 | 缺乏来自多中心包含多种诊断参数的足够规模数据集,基于ML/DL的治疗研究少于诊断研究 | 评估ML/DL技术在强直性脊柱炎诊断和治疗各阶段的应用现状 | PubMed数据库中2013-2023年涉及ML/DL在AS中应用的全文文献 | 机器学习 | 强直性脊柱炎 | 文献综述方法 | NA | 文献数据 | NA | NA | NA | NA | NA |
13115 | 2025-10-07 |
Enabling late-stage drug diversification by high-throughput experimentation with geometric deep learning
2024-02, Nature chemistry
IF:19.2Q1
DOI:10.1038/s41557-023-01360-5
PMID:37996732
|
研究论文 | 开发了一个结合几何深度学习和高通量实验的药物后期功能化平台 | 首次将几何深度学习与高通量实验相结合用于药物后期功能化,并引入了用户友好的反应格式 | 未知底物的反应性分类准确率相对较低(67%),区域选择性分类的F分数为67% | 优化药物候选分子的性质通过后期功能化 | 23种不同的商业药物分子 | 机器学习 | NA | 高通量反应筛选 | 几何深度学习 | 化学反应数据 | 23种商业药物分子 | NA | NA | 平均绝对误差, 平衡准确率, F分数 | NA |
13116 | 2025-04-26 |
An enhanced GhostNet model for emotion recognition: leveraging efficient feature extraction and attention mechanisms
2024, Frontiers in psychology
IF:2.6Q2
DOI:10.3389/fpsyg.2024.1459446
PMID:40270901
|
研究论文 | 提出了一种增强型GhostNet模型(EGT),结合Transformer编码器和双重注意力机制,用于通过面部表情进行鲁棒的情绪识别 | 整合了GhostNet的高效特征提取、Transformer的全局上下文捕捉能力以及双重注意力机制,以选择性地增强关键特征 | 未明确提及具体限制,但可能包括对复杂自然环境和多样化情绪表达的处理能力仍有提升空间 | 提高情绪识别系统的准确性和鲁棒性,以增强智能人机交互系统、个性化推荐系统和心理健康监测工具 | 面部表情情绪识别 | 计算机视觉 | NA | 深度学习 | GhostNet, Transformer, 双重注意力机制 | 图像 | RAF-DB数据集和AffectNet数据集(具体样本数量未提及) | NA | NA | NA | NA |
13117 | 2025-04-25 |
Artificial intelligence in bacterial diagnostics and antimicrobial susceptibility testing: Current advances and future prospects
2025-Jul-15, Biosensors & bioelectronics
IF:10.7Q1
DOI:10.1016/j.bios.2025.117399
PMID:40184880
|
综述 | 本文综述了人工智能在细菌诊断和抗菌药物敏感性测试中的当前进展和未来前景 | 探讨了AI如何通过机器学习和深度学习模型(如Random Forest、SVM、CNN和transformer)革新细菌检测和AST,提供更高效、可及和可靠的诊断方案 | 未具体提及当前AI技术的局限性 | 探索AI在细菌诊断和抗菌药物敏感性测试中的应用及其未来发展方向 | 细菌诊断和抗菌药物敏感性测试 | 机器学习 | 细菌感染 | 机器学习、深度学习、质谱、显微镜检测、电化学传感器、拉曼光谱等 | Random Forest、SVM、CNN、transformer | 图像、光谱数据、电化学数据等 | NA | NA | NA | NA | NA |
13118 | 2025-04-25 |
Machine learning-based detection and quantification of red blood cells in Cholistani cattle: A pilot study
2025-Jun, Research in veterinary science
IF:2.2Q1
DOI:10.1016/j.rvsc.2025.105650
PMID:40215610
|
研究论文 | 本研究首次使用机器学习检测和计数巴基斯坦Cholistani牛的正常和异常红细胞(RBCs),包括泪滴细胞和裂红细胞 | 首次在Cholistani牛中应用机器学习进行红细胞检测和计数,并比较了SVM模型与人工计数方法的效果 | 需要进一步改进以提升使用卷积神经网络或其他深度学习方法进行红细胞检测的准确性 | 探索机器学习在兽医血液学评估中的应用潜力 | Cholistani牛的红细胞(包括正常红细胞、泪滴细胞和裂红细胞) | 机器学习 | NA | 支持向量机(SVM)、主成分分析(PCA) | SVM | 图像 | 预标注的血涂片图像数据集,随机分为训练集(80%)和测试集(20%) | NA | NA | NA | NA |
13119 | 2025-04-25 |
An Intelligent Model of Segmentation and Classification Using Enhanced Optimization-Based Attentive Mask RCNN and Recurrent MobileNet With LSTM for Multiple Sclerosis Types With Clinical Brain MRI
2025-Jun, NMR in biomedicine
IF:2.7Q1
DOI:10.1002/nbm.70036
PMID:40269999
|
研究论文 | 本文提出了一种基于深度学习的智能模型,用于通过临床脑部MRI扫描对多发性硬化症类型进行分割和分类 | 该模型的主要创新点在于将注意力机制和基于循环的深度学习应用于卷积网络,以分类疾病,并提出了一种优化算法来调整参数以提高性能 | NA | 开发一种深度学习系统,用于通过临床脑部MRI扫描对多发性硬化症类型进行分类 | 多发性硬化症(MS)的临床脑部MRI扫描图像 | 数字病理学 | 多发性硬化症 | MRI | AA-MRCNN, RM-LSTM | 图像 | 3427张图像 | NA | NA | NA | NA |
13120 | 2025-04-25 |
Deep Learning-Based Classification of Early-Stage Mycosis Fungoides and Benign Inflammatory Dermatoses on H&E-Stained Whole-Slide Images: A Retrospective, Proof-of-Concept Study
2025-May, The Journal of investigative dermatology
IF:5.7Q1
DOI:10.1016/j.jid.2024.07.036
PMID:39306030
|
研究论文 | 本研究探讨了深度学习在区分早期蕈样肉芽肿和良性炎症性皮肤病中的应用,使用H&E染色的全切片图像数据集 | 首次将深度学习应用于皮肤淋巴瘤的分类,特别是在早期蕈样肉芽肿与良性炎症性皮肤病的区分上 | 需要更大的多机构数据集和改进的方法论,如结合临床数据的多模态深度学习 | 评估深度学习在早期蕈样肉芽肿与良性炎症性皮肤病分类中的表现 | 皮肤活检的H&E染色全切片图像 | 数字病理学 | 皮肤淋巴瘤 | 深度学习 | 弱监督深度学习模型 | 图像 | 924张H&E染色全切片图像,包括233名早期蕈样肉芽肿患者和353名良性炎症性皮肤病患者 | NA | NA | NA | NA |