本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1301 | 2025-05-31 |
Large-Kernel Attention for 3D Medical Image Segmentation
2024, Cognitive computation
IF:4.3Q1
DOI:10.1007/s12559-023-10126-7
PMID:38974012
|
research paper | 提出了一种新型3D大核注意力模块,用于提高多器官和肿瘤在3D医学图像中的分割准确性 | 结合了生物启发的自注意力和卷积的优点,包括局部上下文信息、长距离依赖和通道适应性,同时通过分解大核卷积优化计算成本 | 未明确提及具体限制,但可能包括对特定类型医学图像的适用性或计算资源需求 | 实现准确的3D医学图像分割,特别是多器官和肿瘤的分割 | MRI和CT扫描中的多器官和肿瘤 | digital pathology | cancer | deep learning | U-Net with 3D LK attention module | 3D medical images (MRI, CT) | CT-ORG and BraTS 2020 datasets |
1302 | 2025-05-31 |
Brain Age Estimation from Overnight Sleep Electroencephalography with Multi-Flow Sequence Learning
2024, Nature and science of sleep
IF:3.0Q2
DOI:10.2147/NSS.S463495
PMID:38974693
|
research paper | 本研究通过开发一种新型深度学习模型,利用夜间脑电图(EEG)数据改进脑年龄估计 | 提出了一种基于多流学习的深度学习框架,结合一维Swin Transformer和带注意力机制的卷积神经网络,以及DecadeCE损失函数来解决年龄分布不均的问题 | NA | 改进脑年龄估计方法 | 夜间脑电图(EEG)数据 | machine learning | psychiatric or neurological disorders | overnight electroencephalography (EEG) | Swin Transformer, CNN with attentional mechanisms | EEG signals | 18,767 polysomnograms (PSGs) from 13,616 subjects |
1303 | 2025-05-31 |
Interpolation-split: a data-centric deep learning approach with big interpolated data to boost airway segmentation performance
2024, Journal of big data
IF:8.6Q1
DOI:10.1186/s40537-024-00974-x
PMID:39109339
|
研究论文 | 提出了一种基于数据中心的深度学习方法Interpolation-Split,通过大数据插值提升气道分割性能 | 利用插值和图像分割技术提高数据质量和实用性,并采用集成学习策略整合不同尺度的气道分割结果 | 未提及具体限制 | 提升气道树的分割性能,以支持慢性呼吸系统疾病的诊断和特征分析 | 气道树的分割 | 数字病理 | 慢性呼吸系统疾病 | 深度学习,插值技术,图像分割 | nnU-Net, modified dilated U-Net | 医学图像 | 未提及具体样本量 |
1304 | 2025-05-31 |
Deep learning pipeline reveals key moments in human embryonic development predictive of live birth after in vitro fertilization
2024, Biology methods & protocols
IF:2.5Q3
DOI:10.1093/biomethods/bpae052
PMID:39114746
|
research paper | 该研究应用卷积神经网络(CNN)识别人类胚胎植入前发育中的关键窗口,以预测体外受精(IVF)后的活产概率 | 利用CNN模型识别胚胎发育中的关键时间点,提高胚胎存活率评估的准确性,并展示了在有限数据集上的迁移学习能力 | 研究可能受限于数据集的大小和异质性,且模型性能可能因诊所间的数据差异而有所不同 | 提高体外受精(IVF)治疗中胚胎选择的有效性,以增加活产率 | 人类胚胎在体外受精(IVF)过程中的发育情况 | digital pathology | NA | CNN | CNN | image | NA |
1305 | 2025-05-31 |
A Functional Connectivity-Based Model With a Lightweight Attention Mechanism for Depression Recognition Using EEG Signals
2024, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2024.3509776
PMID:40030510
|
research paper | 本研究设计了一种基于轻量级注意力机制的深度学习模型FCAN,用于通过EEG信号及其相干矩阵实现有效的抑郁症识别 | 设计了一种轻量级注意力机制,减少了模型参数和计算成本,并构建了FCAN模型,其在抑郁症识别上的分类性能优于基线模型 | 模型性能的稳定性可能受到参数初始化过程随机性的影响 | 开发一种高效的抑郁症识别方法 | 抑郁症患者的EEG信号 | machine learning | depression | EEG信号分析 | FCAN (Functional Connectivity Attention Network) | EEG信号及其相干矩阵 | 使用公共EEG数据集进行评估 |
1306 | 2025-05-31 |
Anatomical Location-Guided Deep Learning-Based Genetic Cluster Identification of Pheochromocytomas and Paragangliomas From CT Images
2024, Applications of Medical Artificial Intelligence : Second International Workshop, AMAI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings
DOI:10.1007/978-3-031-47076-9_7
PMID:40342794
|
研究论文 | 本研究提出了一种基于解剖位置引导的深度学习方法来从CT图像中识别嗜铬细胞瘤和副神经节瘤的遗传簇 | 使用双分支视觉变换器(ViT)模型,结合解剖位置信息和遗传类型信息,通过监督对比学习策略优化分类性能 | 样本量相对较小(289名患者的1010个PPGLs),且模型性能仍有提升空间(准确率0.63±0.08) | 开发一种替代昂贵且耗时的基因检测的方法,通过CT图像识别PPGLs的遗传簇 | 嗜铬细胞瘤和副神经节瘤(PPGLs) | 数字病理 | 神经内分泌肿瘤 | 对比增强CT(CE-CT)扫描 | 双分支视觉变换器(ViT) | 医学影像 | 289名患者的1010个PPGLs |
1307 | 2025-05-31 |
Opportunities and Challenges in Applying AI to Evolutionary Morphology
2024, Integrative organismal biology (Oxford, England)
DOI:10.1093/iob/obae036
PMID:40433986
|
综述 | 本文综述了人工智能在进化形态学研究中的应用现状与未来潜力 | 系统梳理了AI技术在进化形态学中的三阶段发展历程,并指出尚未开发的AI应用领域 | 未具体说明当前AI方法在进化形态学中的实际应用限制 | 探讨AI技术在进化形态学研究中的应用前景 | 进化形态学中的表型数据分析 | 机器学习 | NA | 机器学习、深度学习、多模态学习 | NA | 图像数据、表型数据 | NA |
1308 | 2025-05-31 |
Development of Multiscale 3D Residual U-Net to Segment Edematous Adipose Tissue by Leveraging Annotations from Non-Edematous Adipose Tissue
2023-Nov, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.2669719
PMID:40256010
|
研究论文 | 本文开发了一种多尺度3D残差U-Net模型,用于从非水肿脂肪组织的注释中分割水肿脂肪组织 | 利用不准确的注释直接训练深度学习模型,提高了脂肪组织分割的准确性,无需手动注释 | 训练数据中缺乏水肿脂肪组织的异质性,可能影响模型在极端情况下的表现 | 开发一种无需手动注释的深度学习模型,用于医学图像中的脂肪组织分割 | CT扫描中的脂肪组织 | 数字病理学 | 水肿 | 深度学习 | 3D残差U-Net | 医学图像(CT扫描) | 训练集101名患者,测试集14名患者(其中10名患有全身性水肿) |
1309 | 2025-05-31 |
Automated Classification of Intravenous Contrast Enhancement Phase of CT Scans Using Residual Networks
2023-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.2655263
PMID:40248190
|
research paper | 本研究利用残差网络(ResNet34)自动分类CT扫描的静脉对比增强阶段,以提高计算机辅助诊断的准确性 | 首次使用ResNet34自动分类多期CT扫描的静脉对比增强阶段,准确率达99%,优于VGG19和DenseNet121 | 研究使用的数据集仅包含395个弱标记的多期CT扫描,样本量相对较小 | 开发一种自动分类多期CT扫描的方法,以改进数据增强和深度学习模型的训练 | 多期CT扫描的静脉对比增强阶段 | computer vision | NA | deep learning | ResNet34, VGG19, DenseNet121 | image | 395个多期CT扫描(316训练,79测试) |
1310 | 2025-05-31 |
Brain Lesion Synthesis via Progressive Adversarial Variational Auto-Encoder
2022-Sep-21, Simulation and synthesis in medical imaging : ... International Workshop, SASHIMI ..., held in conjunction with MICCAI ..., proceedings. SASHIMI (Workshop)
DOI:10.1007/978-3-031-16980-9_10
PMID:39026926
|
研究论文 | 提出了一种渐进式对抗变分自编码器(PAVAE)框架,用于合成脑部病变图像以增强训练数据集的量和多样性 | 设计了条件嵌入块(CEB)和掩码嵌入块(MEB)来编码掩码的固有条件到特征空间,以更好地利用外部信息提供额外的监督 | 需要大量标注数据进行训练,而收集新兴治疗如LITT的大数据集是不现实的 | 通过合成脑部病变图像来增强训练数据集,以提升下游分割任务的性能 | 脑部病变图像 | 计算机视觉 | 颞叶癫痫 | 深度学习 | CNN, 对抗变分自编码器 | 图像 | NA |
1311 | 2025-05-31 |
Smartphone-based DNA malaria diagnostics using deep learning for local decision support and blockchain technology for security
2021-Aug-02, Nature electronics
IF:33.7Q1
DOI:10.1038/s41928-021-00612-x
PMID:39651407
|
研究论文 | 本文报告了一种基于智能手机的多重DNA疟疾诊断端到端平台 | 结合低成本纸基微流体诊断测试、深度学习算法进行本地决策支持,以及区块链技术确保数据安全连接和管理 | 研究仅在乌干达农村地区进行验证,未涉及其他地区或疾病 | 开发一种快速、准确的疟疾诊断平台,适用于资源有限的农村社区 | 疟疾诊断 | 数字病理 | 疟疾 | DNA诊断 | 深度学习 | 图像 | 乌干达农村地区的测试案例,准确率超过98% |
1312 | 2025-05-30 |
Deep learning algorithms to assist in imaging diagnosis in individuals with disc herniation or spondylolisthesis: A scoping review
2025-Sep, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.105933
PMID:40252304
|
综述 | 本文综述了深度学习算法在椎间盘突出和脊椎滑脱影像诊断中的应用 | 总结了深度学习在脊柱疾病影像诊断中的最新进展,特别是针对椎间盘突出和脊椎滑脱的应用 | 数据集规模较小,缺乏外部验证,研究结果在不同人群中的普适性存在挑战 | 回顾深度学习算法在椎间盘突出和脊椎滑脱影像诊断中的应用 | 椎间盘突出和脊椎滑脱患者的影像数据 | 医学影像分析 | 脊椎疾病 | 深度学习 | CNN, ResNet | MRI, X-ray影像 | 18项符合条件的研究(9项针对椎间盘突出,9项针对脊椎滑脱) |
1313 | 2025-05-30 |
The impact of partner interaction on brief social buffering in adolescent female rats as analyzed by deep learning-based object detection algorithms
2025-Aug-01, Physiology & behavior
IF:2.4Q2
DOI:10.1016/j.physbeh.2025.114934
PMID:40311725
|
研究论文 | 研究伴侣互动对青春期雌性大鼠短暂社会缓冲效应的影响,并利用基于深度学习的对象检测算法进行分析 | 首次证明短暂的社交接触足以诱导社会缓冲效应,特别是在雌性大鼠中,并揭示了社交接触是提高社会缓冲效率的关键因素 | 研究仅针对青春期Sprague-Dawley大鼠,结果可能不适用于其他年龄段或物种 | 探究短暂社会缓冲效应及其在青春期雌性大鼠中的表现 | 青春期Sprague-Dawley大鼠(4-5周龄,雄性和雌性) | 机器学习 | NA | YOLOv8和BoT-SORT算法 | 深度学习 | 视频 | 青春期Sprague-Dawley大鼠(雄性和雌性) |
1314 | 2025-05-30 |
Artificial intelligence applications for the diagnosis of pulmonary nodules
2025-Jul-01, Current opinion in pulmonary medicine
IF:2.8Q2
DOI:10.1097/MCP.0000000000001179
PMID:40326426
|
review | 本文综述了人工智能(AI)在孤立性肺结节(SPNs)诊断中的应用,重点关注临床实践中的挑战 | 探讨了AI在影像学和血液/组织诊断中的实用性,强调了实际应用中的挑战而非深度学习的技术细节 | 大多数模型缺乏前瞻性、多机构验证,存在过拟合和泛化能力有限的风险;AI的'黑箱'特性与医生评估的重叠输入(如结节大小、吸烟史)使临床工作流程整合复杂化 | 评估AI在孤立性肺结节诊断中的作用 | 孤立性肺结节(SPNs) | digital pathology | lung cancer | RNA sequencing | CNN, machine learning | image, clinical data | NA |
1315 | 2025-05-30 |
Automated Measurements of Spinal Parameters for Scoliosis Using Deep Learning
2025-Jun-15, Spine
IF:2.6Q1
DOI:10.1097/BRS.0000000000005280
PMID:40152470
|
research paper | 开发并验证了一种用于脊柱侧弯诊断的自动卷积神经网络(CNN),以测量多种脊柱参数 | 提出了一种全自动的深度学习方法,不仅测量Cobb角,还包括其他多个脊柱参数,显著提高了测量效率和准确性 | 研究为单机构回顾性研究,样本量相对有限,特别是老年患者组样本较少(26例) | 开发自动化的脊柱参数测量系统以改善脊柱侧弯诊断 | 1682名脊柱侧弯患者的正侧位X光片 | digital pathology | 脊柱侧弯 | 深度学习 | CNN | 医学影像(X光片) | 1682名患者(包括87名青少年和26名老年患者) |
1316 | 2025-05-30 |
Predicting host-pathogen interactions with machine learning algorithms: A scoping review
2025-06, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases
DOI:10.1016/j.meegid.2025.105751
PMID:40220943
|
综述 | 本文通过范围综述方法,系统评估了机器学习在宿主-病原体相互作用预测中的应用,比较了不同算法的效果 | 首次系统比较了不同机器学习方法在宿主-病原体相互作用预测中的表现,并提出了未来研究方向 | 纳入分析的文献数量有限(30篇),且存在数据集标准化和模型可解释性方面的不足 | 评估机器学习算法在预测宿主-病原体相互作用方面的有效性和应用现状 | 宿主-病原体相互作用(特别是蛋白质-蛋白质相互作用) | 机器学习 | 传染病 | 机器学习算法(包括随机森林、梯度提升、CNN、RNN等) | Random Forest, Gradient Boosting, CNN, RNN | 蛋白质相互作用数据 | 46篇初步筛选文献,最终纳入30篇进行分析 |
1317 | 2025-05-30 |
Virtual monochromatic image-based automatic segmentation strategy using deep learning method
2025-Jun, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
DOI:10.1016/j.ejmp.2025.104986
PMID:40318556
|
research paper | 本研究提出了一种基于双能CT生成的虚拟单色图像的新型深度学习模型MIAU-Net,用于头部危险器官的自动分割 | 提出了MIAU-Net模型,并探索了不同虚拟能量水平对分割准确性的影响 | 研究仅基于46名患者的数据,样本量较小 | 提高基于双能CT的自动分割准确性 | 头部危险器官(如脑干、视交叉、晶状体等) | digital pathology | NA | DECT | MIAU-Net, U-Net, Attention-UNet, nnU-Net, TransFuse | image | 46名患者的DECT数据 |
1318 | 2025-05-30 |
AutoFE-Pointer: Auto-weighted feature extractor based on pointer network for DNA methylation prediction
2025-Jun, International journal of biological macromolecules
IF:7.7Q1
DOI:10.1016/j.ijbiomac.2025.143668
PMID:40339839
|
研究论文 | 提出了一种基于指针网络的自动加权特征提取器AutoFE-Pointer,用于DNA甲基化预测 | 利用改进的软化指针网络动态提取和加权来自不同DNA序列的特征,能够同时处理17个不同物种的基准数据集,实现跨物种泛化并减少计算需求 | 未提及具体样本量或实验验证的局限性 | 开发精确高效的DNA甲基化预测工具 | DNA甲基化模式 | 计算生物学 | 癌症 | DNA甲基化测序 | 指针网络 | DNA序列数据 | NA |
1319 | 2025-05-30 |
Fully automated image quality assessment based on deep learning for carotid computed tomography angiography: A multicenter study
2025-Jun, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
DOI:10.1016/j.ejmp.2025.104990
PMID:40347553
|
研究论文 | 开发并评估基于深度学习和多元逻辑回归算法的全自动模型,用于颈动脉CT血管造影图像质量评估 | 提出了一种全自动的多指标模型,用于颈动脉CTA图像质量评估,其性能与放射科医师的主观评估相当且效率更高 | 研究为回顾性设计,且仅使用了来自四家三级医院的840例颈动脉CTA图像 | 开发并评估用于颈动脉CT血管造影图像质量评估的全自动模型 | 颈动脉CT血管造影图像 | 数字病理 | 心血管疾病 | 深度学习,多元逻辑回归算法 | 3D Res U-net | 图像 | 840例颈动脉CTA图像(来自四家三级医院) |
1320 | 2025-05-30 |
Comparative analysis of deep learning methods for breast ultrasound lesion detection and classification
2025-Jun, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
DOI:10.1016/j.ejmp.2025.104993
PMID:40381258
|
research paper | 比较分析深度学习在乳腺超声病灶检测和分类中的应用效果 | 首次探讨了结合病灶检测和分类步骤的影响,并公开了一个新的乳腺超声分割数据集BUS-UCLM | 研究仅针对特定数据集,未涉及其他可能的深度学习模型或方法 | 评估不同深度学习方法在乳腺超声病灶检测和分类中的性能 | 乳腺超声图像中的病灶 | digital pathology | breast cancer | deep learning | Mask R-CNN, Poolformer | image | 五个数据集(包括新收集的BUS-UCLM和四个公开数据集:BUSI、OASBUD、RODTOOK、UDIAT) |