深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 33853 篇文献,本页显示第 1301 - 1320 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1301 2025-11-03
Artificial intelligence-driven framework for discovering synthetic binding protein-like scaffolds from the entire protein universe
2025-Aug-31, Briefings in bioinformatics IF:6.8Q1
研究论文 开发了一种人工智能驱动的框架,用于从整个已知蛋白质组中发现合成结合蛋白样支架 结合深度学习FoldSeek和自主开发的HP2A算法,能够从低序列相似性中识别结构相似的蛋白质支架 仅使用四种代表性合成结合蛋白作为概念验证,需要进一步实验验证 发现高质量的工程蛋白质支架,促进新型合成结合蛋白的开发 合成结合蛋白样支架,包括Affibody、Anticalin、DARPin和Fynome 机器学习 NA 深度学习,蛋白质结构分析,进化分析 深度学习 蛋白质序列和结构数据 四种代表性合成结合蛋白作为查询模板 FoldSeek, HP2A NA 序列相似性,TM-score NA
1302 2025-11-03
Accurate deep-learning model to differentiate dementia severity and diagnosis using a portable electroencephalography device
2025-Jul-20, Scientific reports IF:3.8Q1
研究论文 提出基于便携式脑电图设备和深度学习的方法,用于区分健康志愿者与痴呆相关疾病患者 首次将便携式EEG设备与定制化Transformer模型结合用于痴呆严重程度和诊断分类 样本量相对有限(233名参与者),未提及模型在其他人群中的泛化能力验证 开发可访问、成本效益高且非侵入性的痴呆诊断工具 233名参与者(119名健康志愿者和114名痴呆相关疾病患者) 医疗人工智能 痴呆症 脑电图(EEG),短时傅里叶变换 Transformer 脑电图信号 233名参与者(119名健康志愿者,114名患者) NA 定制化Transformer模型 AUC(曲线下面积),平衡准确率(bACC) NA
1303 2025-11-03
Integrating AI and genomics: predictive CNN models for schizophrenia phenotypes
2025-Jun-01, Journal of integrative bioinformatics IF:1.5Q3
研究论文 本研究利用深度学习分析遗传数据,预测与精神分裂症相关的表型特征 首次将卷积神经网络应用于大规模外显子组测序数据,识别精神分裂症的遗传模式 研究基于瑞典人群数据,遗传特征尚未完全解析 探索深度学习在精神疾病基因型-表型关系研究中的应用 精神分裂症患者与对照组的遗传数据 机器学习 精神分裂症 外显子组测序 CNN 遗传数据 大规模病例对照样本(瑞典人群) NA 卷积神经网络 准确率 NA
1304 2025-11-03
Benchmarking diffusion models against state-of-the-art architectures for OCT fluid biomarker segmentation
2025, PloS one IF:2.9Q1
研究论文 本研究评估扩散模型在OCT视网膜液性生物标志物分割中的性能,并与当前主流分割模型进行比较 首次将扩散模型应用于OCT视网膜液性生物标志物分割任务,并与多种先进分割架构进行系统对比 使用的标注扫描数量有限(SRF 269例,IRF 224例,PED 114例),可能影响模型泛化能力 开发自动化的OCT视网膜疾病特征分割方法,辅助临床诊断标准化 视网膜OCT扫描中的视网膜下液(SRF)、视网膜内液(IRF)和色素上皮脱离(PED) 计算机视觉 视网膜疾病 光学相干断层扫描(OCT) 扩散模型, U-Net, Transformer 医学图像 SRF 269例,IRF 224例,PED 114例 OCT扫描 NA 扩散模型, Nested U-Net, nnU-Net, TransUNet, SwinUNet Dice系数, 敏感度, 特异度, Pearson相关系数, R2 NA
1305 2025-11-03
Evaluating machine learning models for predictive accuracy in cryptocurrency price forecasting
2025, PeerJ. Computer science
研究论文 本研究评估机器学习分类模型和技术指标在加密货币价格预测中的预测性能和鲁棒性 提供了包含逻辑回归、随机森林和梯度提升等模型在不同数据配置和重采样技术下的新颖比较,以解决类别不平衡问题 未明确说明具体使用的加密货币种类和数据时间范围 识别可靠的加密货币算法交易方法,为明智决策和盈利策略开发提供依据 加密货币市场的历史交易数据 机器学习 NA NA 逻辑回归, 随机森林, 梯度提升, XGBoost 历史交易数据 NA NA NA 预测准确率 NA
1306 2025-11-03
Cajal's legacy in the digital era: from neuroscience foundations to deep learning
2025, Frontiers in neuroanatomy IF:2.1Q3
综述 本文探讨了Santiago Ramón y Cajal的神经科学奠基性工作对现代人工智能特别是深度学习的持续影响 系统性地揭示了Cajal神经科学理论与现代深度学习之间的历史渊源和理论联系 NA 回顾Cajal的关键贡献并探索其在人工智能发展中的作用 Cajal的神经科学理论与深度学习理论 机器学习 NA NA 人工神经网络 NA NA NA NA NA NA
1307 2025-11-03
A Deep Learning Approach Toward Differentiating Left versus Right for Idiopathic Ventricular Arrhythmia Originated from Outflow Tract
2025, Journal of medical signals and sensors
研究论文 本研究使用深度学习技术通过标准12导联心电图区分起源于流出道的特发性室性心律失常的左右侧起源位置 首次将下一代测序思想应用于心电图分析,创建一维早搏数据流,并比较多种一维深度学习模型在心律失常起源定位中的性能 研究基于公开数据集,样本量相对有限(334名患者),未在更广泛人群中验证 开发基于深度学习的无创方法,准确定位流出道起源的室性心律失常的起源侧别 特发性室性心律失常患者的心电图数据 医疗人工智能 心血管疾病 心电图分析 LSTM, GRU, 1D-CNN 一维心电图信号 334名患者 NA 一维卷积神经网络 准确率, F1分数 NA
1308 2025-11-03
Intelligent grading of sugarcane leaf disease severity by integrating physiological traits with the SSA-XGBoost algorithm
2025, Frontiers in plant science IF:4.1Q1
研究论文 提出一种基于生理特征整合SSA-XGBoost算法的甘蔗叶部病害严重程度智能分级方法 首次将麻雀搜索算法(SSA)与XGBoost结合用于甘蔗病害严重度分级,相比基于图像的深度学习方法具有数据易获取、计算效率高和模型透明度好的优势 研究仅针对三种甘蔗叶部病害,未验证对其他病害的适用性;模型性能依赖特定仪器采集的生理参数 开发甘蔗叶部病害严重程度的智能诊断与早期预警技术 感染褐条病、环斑病和花叶病的甘蔗叶片 农业人工智能 植物病害 植物营养分析仪(TYS-4N)测量SPAD值、叶面温度和氮含量 XGBoost, KNN, AdaBoost, Random Forest, Logistic Regression, Decision Tree 生理特征数据 从耿马县采集的独立验证数据集,包含四个严重度等级(轻度、中度、中重度和重度)的甘蔗叶片样本 Scikit-learn, XGBoost SSA-XGBoost 精确率, 召回率, F1分数, 准确率, PRFA综合评分 NA
1309 2025-11-03
App2: software solution for apple leaf disease detection based on deep learning (CNN+SVM)
2025, Frontiers in artificial intelligence IF:3.0Q2
研究论文 开发了一款基于深度学习(CNN+SVM)的苹果叶病害检测移动应用App2 提出结合CNN和SVM的混合模型用于苹果叶病害识别,并集成OpenAI API进行图像预过滤 在清晰病叶图像上的检测性能为80%,仍有提升空间 通过移动应用实现苹果叶病害的早期检测 苹果树叶片图像 计算机视觉 植物病害 深度学习 CNN,SVM 图像 NA FastAPI,React Native,OpenAI API CNN+SVM混合架构 准确率 Azure云平台
1310 2025-11-03
Evaluating data partitioning strategies for accurate prediction of protein-ligand binding free energy changes in mutated proteins
2025, Computational and structural biotechnology journal IF:4.4Q2
研究论文 本研究评估了不同数据划分策略对蛋白质-配体结合自由能变化预测准确性的影响,并提出了一种基于查询-锚点对的学习框架 提出了查询-锚点对学习框架,利用已知状态作为锚点来预测未知查询状态,显著提高了预测准确性 在UniProt数据划分策略下模型性能下降,需要依赖参考数据来提升预测精度 评估数据划分策略对蛋白质-配体结合自由能变化预测准确性的影响 蛋白质突变引起的蛋白质-配体结合自由能变化 机器学习 NA ESM-2蛋白质大语言模型嵌入 机器学习/深度学习模型 蛋白质序列数据 MdrDB数据库 NA ESM-2 Pearson相关系数 NA
1311 2025-11-03
Enhancing Robotic Collaborative Tasks Through Contextual Human Motion Prediction and Intention Inference
2025, International journal of social robotics IF:3.8Q2
研究论文 提出一种深度学习架构,通过预测3D人体运动和人类意图来增强机器人在协作任务中的能力 结合人类运动预测和意图推断,考虑机器人存在时的交互情境,采用多头注意力机制处理不同任务的输入 未明确说明模型在更复杂场景下的泛化能力,用户研究样本规模有限 提高机器人在人机协作任务中的表现和适应性 人机协作场景中的人类运动和意图 计算机视觉, 机器人学 NA 深度学习, 运动预测, 意图推断 多头注意力机制 3D运动数据, 情境信息 用户研究参与者(具体数量未说明) NA 多头注意力架构 社会性, 自然度, 安全性, 舒适度 NA
1312 2025-11-03
Automated detection of pinworm parasite eggs using YOLO convolutional block attention module for enhanced microscopic image analysis
2025, Frontiers in bioengineering and biotechnology IF:4.3Q2
研究论文 提出一种结合YOLO和注意力机制的新型框架YCBAM,用于自动化检测显微镜图像中的蛲虫寄生虫卵 首次将YOLO与自注意力机制和卷积块注意力模块(CBAM)集成,在具有挑战性的成像条件下实现寄生虫元素的精确定位 NA 开发自动化寄生虫检测方法以提高诊断准确性和效率 显微镜图像中的蛲虫寄生虫卵 计算机视觉 寄生虫感染 深度学习,显微镜成像 YOLO, CNN 显微镜图像 NA NA YOLO Convolutional Block Attention Module (YCBAM), CBAM 精确度, 召回率, 训练框损失, 平均精度(mAP), mAP50-95 NA
1313 2025-11-03
Artificial intelligence (AI)-Enabled behavioral health application for college students: Pilot study protocol
2025, PloS one IF:2.9Q1
研究论文 本研究开发了一款基于人工智能的行为健康应用程序,用于大学生抑郁症状的自动筛查 结合传感器行为数据和深度学习技术开发主动、私密、自动化的心理健康自我意识工具 仅针对两所美国大学的1000名大一学生,样本代表性有限 开发自动化筛查工具识别大学生抑郁行为模式 18岁及以上大学一年级本科生 机器学习 抑郁症 传感器数据采集、问卷调查 深度学习 传感器行为数据、调查问卷数据 约1000名来自美国中西部和西南部两所公立大学的一年级本科生 NA NA NA NA
1314 2025-11-03
Enhanced audience sentiment analysis in IoT-integrated metaverse media communication
2025, PloS one IF:2.9Q1
研究论文 提出一种集成物联网和元宇宙媒体的深度学习情感分析框架,用于增强观众情感分析能力 融合BERT双向编码和GPT生成建模的BG-Hybrid混合模型,结合动态窗口分割和持续优化机制 未明确说明模型在跨语言和文化背景下的泛化能力 开发可扩展的实时情感分析系统,处理异构高速媒体流 物联网集成元宇宙媒体通信中的观众情感 自然语言处理 NA 情感分析 BERT, GPT 文本 Twitter Sentiment140和Amazon Reviews数据集 NA BG-Hybrid混合架构 准确率, F1分数, 响应延迟 NA
1315 2025-11-03
Deep Learning-Based Reconstruction of 3D T1 SPACE Vessel Wall Imaging Provides Improved Image Quality with Reduced Scan Times: A Preliminary Study
2024-Nov-07, AJNR. American journal of neuroradiology
研究论文 本研究评估深度学习优化的3D T1 SPACE血管壁成像序列在缩短扫描时间的同时提升图像质量的效果 首次将深度学习图像重建技术应用于颅内血管壁成像序列优化,在保持图像质量的同时显著缩短扫描时间 样本量较小(10名健康对照和5名患者),需要更大规模研究验证 评估深度学习优化序列在颅内血管壁成像中的性能表现 健康对照者和患者的颅内血管 医学影像分析 脑血管疾病 T1加权3D SPACE序列磁共振成像 深度学习 磁共振图像 10名健康对照和5名患者 NA NA Likert评分, 配对样本t检验 NA
1316 2025-11-03
A Comparison of CT-Based Pancreatic Segmentation Deep Learning Models
2024-11, Academic radiology IF:3.8Q1
研究论文 比较五种基于CT的胰腺分割深度学习模型在不同扫描和患者特征下的性能表现 首次系统评估五种高性能胰腺分割模型在不同临床特征下的分层性能,并识别影响分割准确性的关键因素 回顾性研究设计,部分患者性别和年龄数据缺失,仅评估了五种特定模型 评估和比较不同深度学习模型在CT胰腺分割任务中的性能表现 胰腺CT图像分割 计算机视觉 胰腺疾病 CT成像 深度学习模型 CT医学图像 352例CT扫描(30例女性,25例男性,297例性别未知;年龄58±7岁,327例年龄未知),训练数据规模从282到8448例扫描不等 NA U-Net, Swin Transformer, nnUNet Dice系数, Hausdorff距离, 平均表面距离 NA
1317 2025-11-03
Cardiac MR Fingerprinting: Overview, Technical Developments, and Applications
2024-Nov, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
综述 本文全面概述了心脏磁共振指纹技术(MRF)的发展现状、技术进展及其临床应用 系统总结了心脏MRF这一新兴多参数成像技术的完整技术框架,包括脉冲序列实现、字典生成、快速k空间采样和模式识别方法 证据等级为5级,技术效能处于第一阶段,表明该技术仍处于发展初期 探讨如何通过多参数MRI技术简化心脏磁共振检查流程,提高检查效率和可重复性 心脏磁共振成像技术及其在心血管疾病评估中的应用 医学影像 心血管疾病 磁共振指纹技术(MRF)、多参数MRI、同时多层采样、3D采样、运动校正算法 深度学习 磁共振图像 NA NA NA NA NA
1318 2025-11-03
Tricuspid valve flow measurement using a deep learning framework for automated valve-tracking 2D phase contrast
2024-Nov, Magnetic resonance in medicine IF:3.0Q2
研究论文 开发了一种基于深度学习的自动瓣膜追踪二维相位对比方法,用于测量动态三尖瓣血流 首次将深度学习网络TVnet应用于自动追踪三尖瓣平面,实现了动态采集平面跟踪瓣膜运动的二维相位对比成像 样本量较小(9名健康受试者和2名患者),需要更大规模研究验证 解决心血管磁共振测量三尖瓣血流速度的临床挑战 三尖瓣血流和舒张功能 医学影像分析 心血管疾病 二维相位对比磁共振成像 深度学习网络 心脏长轴电影图像和相位对比图像 11名受试者(9名健康人,2名患者) NA TVnet 偏倚, 标准差, 组内相关系数 NA
1319 2025-11-03
A deep learning-based approach for unbiased kinematic analysis in CNS injury
2024-Nov, Experimental neurology IF:4.6Q1
研究论文 开发基于深度学习的无标记运动学分析系统用于中枢神经系统损伤研究 开发了两种基于深度学习的无标记运动学分析范式(MotorBox和MotoRater),消除了研究者偏见和变异性 NA 改进脊髓损伤后功能评估方法,提高临床转化成功率 小鼠运动功能 计算机视觉 脊髓损伤 深度学习 深度学习算法 视频 NA DeepLabCut NA 运动指标、步态指标 NA
1320 2025-11-03
BOATMAP: Bayesian Optimization Active Targeting for Monomorphic Arrhythmia Pace-mapping
2024-Nov, Computers in biology and medicine IF:7.0Q1
研究论文 提出一种名为BOATMAP的新型主动学习方法,通过12导联心电图逐步定位心室激活起源 将传统机器学习方法的输入输出关系反转,使用高斯过程作为代理模型,提供可解释的临床指导 仅在仿真环境中测试,尚未在真实临床环境中验证 开发能够精确定位心室激活起源的算法,指导心室心动过速消融治疗 心室激活起源定位 机器学习 心血管疾病 12导联心电图,起搏标测 高斯过程 心电图信号 多种心脏几何形状和组织特性的仿真环境 NA 高斯过程回归 定位精度 NA
回到顶部