深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 29150 篇文献,本页显示第 13201 - 13220 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
13201 2025-02-16
Specific Emitter Identification Method for Limited Samples via Time-Wavelet Spectrum Consistency
2025-Jan-22, Sensors (Basel, Switzerland)
研究论文 本文提出了一种基于TFC-CNN的特定发射器识别方法,用于解决在发射器样本稀缺和训练数据有限的情况下传统方法难以分类的问题 提出了一种基于时间-小波谱一致性的TFC-CNN方法,通过连续小波变换进行数据增强,并利用复值神经网络和深度卷积神经网络提取隐藏的发射器身份特征 方法在样本稀缺的情况下表现良好,但在样本充足的情况下是否仍具有优势未明确说明 解决在发射器样本稀缺和训练数据有限的情况下传统方法难以分类的问题 无线电信号中的发射器 机器学习 NA 连续小波变换(CWT) TFC-CNN(复值神经网络和深度卷积神经网络) 无线电信号 开源WiFi数据集和自动相关监视广播(ADS-B)数据集
13202 2025-02-16
Coupling Artificial Intelligence with Proper Mathematical Algorithms to Gain Deeper Insights into the Biology of Birds' Eggs
2025-Jan-21, Animals : an open access journal from MDPI IF:2.7Q1
研究论文 本文探讨了将人工智能与适当的数学算法结合,以深入理解鸟类卵的生物学特性 提出了将深度学习和人工智能应用于禽蛋形态分析的新方法,并重新评估了多种数学模型的有效性和实用性 未具体说明所提出方法的实验验证结果和实际应用效果 研究目的是通过AI和DL技术提高禽蛋的质量、生产力和市场竞争力 研究对象是禽蛋的形态特征,包括形状、重量、体积、表面积和气室计算 计算机视觉 NA 深度学习(DL) 深度学习模型 图像 未提及具体样本数量
13203 2024-08-07
Cardiac CT-derived quantification of myocardial extracellular volume using deep learning-based reconstruction: A feasibility study
2025 Jan-Feb, Journal of cardiovascular computed tomography IF:5.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA
13204 2025-02-16
Improving building extraction from high-resolution aerial images: Error correction and performance enhancement using deep learning on the Inria dataset
2025 Jan-Mar, Science progress IF:2.6Q2
研究论文 本研究利用深度学习技术改进从高分辨率航空图像中提取建筑物的方法,并在Inria数据集上进行了性能比较 通过消除错误数据和调整图像大小,显著提升了深度学习网络在建筑物提取任务中的性能 某些模型在特定挑战性条件下(如树木遮挡、复杂室内花园)表现不佳,容易产生误报 提高从高分辨率航空图像中提取建筑物的准确性和效率 高分辨率航空图像中的建筑物 计算机视觉 NA 深度学习 DeepLabv3+, Attention U-Net, U-Net, SE-ResNeXt-50, SE-ResNet-50, ResNeXt-50, ResNet-50, UNet++, U2Net 图像 180张高分辨率航空图像
13205 2025-02-15
COVID-19 recognition from chest X-ray images by combining deep learning with transfer learning
2025 Jan-Dec, Digital health IF:2.9Q2
研究论文 本文提出了一种名为Covid-DenseNet的深度学习模型,用于从胸部X光图像中检测COVID-19,旨在构建一个计算复杂度较小、泛化能力较强且在基准数据集和其他具有不同样本分布特征和样本大小的数据集上表现优异的模型 结合迁移学习和注意力机制,通过多尺度融合架构提取和增强图像特征,提高了模型的识别准确性和泛化能力 模型在外部测试集上的识别准确率仍有提升空间,特别是在样本分布不平衡的情况下 开发一种高效且泛化能力强的深度学习模型,用于从胸部X光图像中检测COVID-19 胸部X光图像 计算机视觉 COVID-19 深度学习,迁移学习 Covid-DenseNet 图像 三个公开的胸部放射学数据集,包括基准数据集和其他两个数据集
13206 2025-02-16
Avoiding missed opportunities in AI for radiology
2024-Dec, International journal of computer assisted radiology and surgery IF:2.3Q2
评论 本文探讨了人工智能(AI)在放射学中的应用,强调了避免错失AI潜力的重要性 提出了在放射学中避免错失AI应用机会的策略,并强调了AI在临床和财务上的双重益处 文章主要基于作者所在医疗系统的经验,可能不具有普遍适用性 探讨如何充分利用AI在放射学中的潜力,以提升医疗智慧和患者护理 放射学中的AI应用 机器学习 NA 深度学习 人工神经网络 NA NA
13207 2025-02-16
Flexible use of conserved motif vocabularies constrains genome access in cell type evolution
2024-Sep-06, bioRxiv : the preprint server for biology
研究论文 本文通过整合单核多组学测序和深度学习技术,探讨了细胞类型进化中基因组可及性的约束机制 揭示了细胞类型家族间基因组可及性的保守性,并发现不同物种间细胞类型关系的特异性相互作用并不保守 研究结果主要基于早期分支动物,如扁形动物和刺胞动物,可能不适用于所有生物 探讨细胞类型多样化在进化过程中如何受到基因组可及性的约束 细胞类型家族及其基因组可及性 基因组学 NA 单核多组学测序,深度学习 深度学习模型 基因组序列数据 涉及多个早期分支动物物种的细胞类型
13208 2025-02-16
EPInformer: a scalable deep learning framework for gene expression prediction by integrating promoter-enhancer sequences with multimodal epigenomic data
2024-Aug-01, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种名为EPInformer的可扩展深度学习框架,用于通过整合启动子-增强子序列与多模态表观基因组数据来预测基因表达 EPInformer框架通过整合启动子-增强子相互作用及其序列、表观基因组信号和染色质接触,显著提高了基因表达预测的准确性,并能够准确再现CRISPR扰动实验验证的增强子-基因相互作用 尽管EPInformer在基因表达预测方面表现出色,但其训练和适应新生成数据可能需要大量资源 研究目的是开发一种能够更准确预测基因表达的深度学习框架 研究对象是基因表达及其调控机制,特别是启动子-增强子相互作用 机器学习 NA 深度学习 深度学习框架 DNA序列、表观基因组数据、染色质接触数据 NA
13209 2025-02-16
An accurately supervised motion-aware deep network for non-contact pain assessment of trigeminal neuralgia mouse model
2024-Mar, Journal of oral & facial pain and headache IF:1.9Q2
研究论文 本文提出了一种名为三叉神经痛评估网络(TNPAN)的深度神经网络,用于非接触式疼痛评估,特别针对三叉神经痛小鼠模型 构建了一个客观的疼痛分级数据集作为模型训练的真实标签,并提出了一个融合静态纹理特征和动态行为特征的深度神经网络 现有方法存在监督信号不够客观、未考虑小鼠模型的动态行为特征以及模型泛化能力不足的问题 探索三叉神经痛的病理生理学并开发有效的镇痛药物 三叉神经痛小鼠模型 计算机视觉 三叉神经痛 深度学习 深度神经网络(TNPAN) 图像 NA
13210 2025-02-16
An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study
2024-Jan-22, NPJ precision oncology IF:6.8Q1
研究论文 本文提出了一种基于深度学习的自动化管道,用于直肠癌的EMVI分类和反应预测,使用基线MRI数据 提出了一种全自动的管道,结合nnUNet进行肿瘤分割,并利用多级图像特征训练分类模型MLNet,提高了EMVI分类和CR预测的准确性 研究为回顾性研究,可能存在选择偏差,且样本量虽大但来自多个中心,数据一致性可能存在问题 提高直肠癌患者EMVI分类和CR预测的准确性,以辅助临床治疗决策 直肠癌患者 数字病理 直肠癌 MRI(磁共振成像) nnUNet, MLNet, 3D ResNet10 图像 509名患者,来自9个中心
13211 2025-02-16
The role of cortical structural variance in deep learning-based prediction of fetal brain age
2024, Frontiers in neuroscience IF:3.2Q2
研究论文 本文探讨了皮层结构变异在基于深度学习的胎儿脑龄预测中的作用 首次解释了形状相关的皮层结构特征对预测胎儿脑龄变异的影响 未提及具体的研究局限性 研究胎儿脑龄预测模型中皮层结构特征的影响 胎儿大脑 计算机视觉 NA 磁共振成像 卷积神经网络 图像 未提及具体样本数量
13212 2025-02-16
Deep-learning two-photon fiberscopy for video-rate brain imaging in freely-behaving mice
2022-03-22, Nature communications IF:14.7Q1
研究论文 本文介绍了一种深度学习辅助的双光子纤维镜技术,用于在自由行为的小鼠中进行视频速率的大脑成像 开发了高速扫描器和降采样方案以提高成像速度,并引入了深度学习算法以恢复图像质量,实现了在自由行为小鼠中进行高分辨率、高速度(26 fps)的成像 目前的技术仍受限于光机械尺寸和重量的限制 提高双光子纤维镜的成像速度,以更好地理解神经活动模式与行为之间的关系 自由行为的小鼠 计算机视觉 NA 双光子纤维镜成像 深度学习算法 视频 自由行为的小鼠
13213 2025-02-16
Deep learning-based automated segmentation of resection cavities on postsurgical epilepsy MRI
2022, NeuroImage. Clinical
研究论文 本研究开发了一种基于深度学习的自动化分割算法,用于分析癫痫患者的术后MRI,并通过图形用户界面(GUI)估计术后脑体积,包括海马残留组织 开发了一种基于3个U-Net卷积神经网络的多数投票集成算法,用于分割手术切除部位,并部署了一个全自动的GUI管道,用于比较切除分割与术前成像 研究为回顾性研究,样本量相对较小(62名患者) 开发一种自动化分割算法,用于准确分割癫痫患者的术后MRI中的切除腔 62名接受切除手术的颞叶癫痫(TLE)患者的术后T1加权MRI 计算机视觉 癫痫 MRI U-Net 图像 62名颞叶癫痫患者和40名对照受试者
13214 2025-02-16
Mapping Epileptogenic Tissues in MRI-Negative Focal Epilepsy: Can Deep Learning Uncover Hidden Lesions?
2021-10-19, Neurology IF:7.7Q1
NA NA NA NA NA NA NA NA NA NA NA NA
13215 2025-02-15
Comparison of Deep Learning Models for Voice Disorder Classification Using Kymographic Images
2025-Feb-12, Journal of voice : official journal of the Voice Foundation IF:2.5Q1
研究论文 本研究提出了一种基于深度学习的声门振动图分类方法,用于自动化分析声门振动模式中的细微变化 首次将深度学习模型应用于声门振动图的分类,以自动化分析声门振动模式中的病理变化 研究仅使用了BAGLS数据集,样本来源有限,可能影响模型的泛化能力 开发一种自动化工具,辅助临床医生诊断声音障碍 声门振动图 计算机视觉 声音障碍 深度学习 AlexNet, DenseNet121, Xception, Inceptionv3, ResNet50v2 图像 BAGLS数据集中的高速视频记录
13216 2025-02-15
Deep learning-based clustering for endotyping and post-arthroplasty response classification using knee osteoarthritis multiomic data
2025-Feb-12, Annals of the rheumatic diseases IF:20.3Q1
研究论文 本文开发了一种基于多模态深度学习的框架,用于聚类来自三种生物流体的多组学数据,以识别不同的膝骨关节炎内型并分类全膝关节置换术后的疼痛/功能反应 创新点在于使用多模态深度学习框架整合多组学数据,识别膝骨关节炎的不同内型,并提高全膝关节置换术后反应的分类性能 研究样本量相对较小,且仅针对膝骨关节炎患者,可能限制了结果的普适性 研究目的是通过多模态深度学习聚类多组学数据,识别膝骨关节炎的不同内型,并分类全膝关节置换术后的疼痛/功能反应 研究对象为414名膝骨关节炎患者 机器学习 膝骨关节炎 microRNA测序和代谢组学 变分自编码器(VAE)与K-means聚类 多组学数据(代谢物和microRNA) 414名膝骨关节炎患者的血浆、滑液和尿液样本
13217 2025-02-14
Using Deep Learning to Simultaneously Reduce Noise and Motion Artifacts in Brain MR Imaging
2025-Feb-13, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine IF:2.5Q2
研究论文 本文提出了一种使用深度学习同时减少脑部MRI中的噪声和运动伪影的方法 通过深度学习模型独立处理T1W、T2W和FLAIR序列,有效去除噪声和运动伪影,且不受成像方向和伪影方向的影响 研究仅基于20名健康志愿者的数据,样本量较小,且未涉及真实患者数据 提高脑部MRI的临床实用性,通过减少噪声和运动伪影来改善图像质量 脑部MRI图像(T1W、T2W和FLAIR序列) 计算机视觉 NA 深度学习 深度学习模型 图像 20名健康志愿者的脑部MRI图像,模拟生成的115200对图像用于训练、验证和测试
13218 2025-02-14
Improved segmentation of hepatic vascular networks in ultrasound volumes using 3D U-Net with intensity transformation-based data augmentation
2025-Feb-13, Medical & biological engineering & computing IF:2.6Q3
研究论文 本研究通过引入基于强度变换的数据增强方法,改进了使用3D U-Net进行肝脏血管网络的三维分割 提出了基于高对比度和低对比度强度变换的数据增强方法,显著提高了3D U-Net在肝脏血管网络分割中的性能 高对比度强度变换的数据增强方法降低了分割准确性,需要进一步优化 改进肝脏血管网络的三维分割,以支持超声介导的肝脏疾病诊疗 肝脏血管网络 计算机视觉 肝脏疾病 3D U-Net 3D U-Net 超声体积数据 78个超声体积数据
13219 2025-02-14
Analytical Capabilities and Future Perspectives of Chemometrics in Omics for Food Microbial Investigation
2025-Feb-13, Critical reviews in analytical chemistry IF:4.2Q1
综述 本文综述了化学计量学在食品微生物研究中的应用、原理及挑战,并探讨了其与多组学和生物信息学结合的未来发展 强调了化学计量学在食品微生物组学研究中的潜力,并提出了整合深度学习和人工智能算法以提高分析能力和预测精度的迫切需求 选择合适的化学计量工具并进行多组学数据融合分析仍是一个巨大挑战 揭示食品微生物在营养和安全中的功能属性和机制 食品微生物组 生物信息学 NA 多组学技术 深度学习(DL)和人工智能算法 多组学数据 NA
13220 2025-02-14
Dwarf Updated Pelican Optimization Algorithm for Depression and Suicide Detection from Social Media
2025-Feb-13, The Psychiatric quarterly
研究论文 本文提出了一种新的方法,通过社交媒体检测抑郁和自杀倾向,解决了现有方法在变异性和模型泛化方面的挑战 提出了一种改进的Dwarf Updated Pelican优化算法(DU-POA),用于优化模型权重,显著提高了检测准确率 NA 通过社交媒体数据检测抑郁和自杀倾向 社交媒体数据 自然语言处理 精神疾病 TF-IDF, word2vec, 改进的LSTM RNN, DBN, LSTM, 集成模型 文本 NA
回到顶部