深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24103 篇文献,本页显示第 13301 - 13320 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
13301 2024-10-24
Ribonanza: deep learning of RNA structure through dual crowdsourcing
2024-Jun-11, bioRxiv : the preprint server for biology
研究论文 本文介绍了通过众包收集的RNA结构化学映射数据集Ribonanza,并利用该数据集训练和评估了多种深度神经网络模型 提出了Ribonanza数据集,并通过Kaggle挑战赛训练和评估了多种深度神经网络模型,最终整合成一个名为RibonanzaNet的自包含模型 NA 解决RNA结构从序列预测的问题,并提高模型在RNA结构建模中的性能 RNA序列及其结构 机器学习 NA 深度学习 深度神经网络 RNA序列数据 两百万个多样化的RNA序列
13302 2024-10-24
A Hybrid Deep Learning Classification of Perimetric Glaucoma Using Peripapillary Nerve Fiber Layer Reflectance and Other OCT Parameters from Three Anatomy Regions
2024-Jun-06, ArXiv
PMID:38883241
研究论文 研究使用混合深度学习模型结合视网膜神经纤维层反射和其他OCT参数来提高青光眼诊断的准确性 提出了一种混合深度学习模型,结合视网膜神经纤维层反射和其他OCT参数,显著提高了青光眼的诊断准确性 研究样本量相对较小,可能需要进一步验证在大规模数据集上的表现 探讨深度学习模型是否能有效结合视网膜神经纤维层反射和其他OCT参数用于青光眼诊断 视网膜神经纤维层反射、OCT参数、青光眼患者和正常受试者 计算机视觉 眼科疾病 OCT 混合深度学习模型(FCN和CNN) 图像 106名正常受试者和164名青光眼患者
13303 2024-10-24
Artificial intelligence-based morphologic classification and molecular characterization of neuroblastic tumors from digital histopathology
2024-Jun-04, Research square
研究论文 开发了一种基于注意力机制的多实例学习和自监督学习的深度学习模型,用于从数字病理学图像中对神经母细胞瘤进行形态学分类和分子特征分析 首次将注意力机制的多实例学习和自监督学习应用于神经母细胞瘤的病理分类和分子特征分析 NA 开发一种自动化诊断和精确分类神经母细胞瘤的工具 神经母细胞瘤的病理分类和分子特征分析 数字病理学 NA 深度学习 注意力机制的多实例学习 (aMIL) 和自监督学习 (SSL) 图像 外部测试数据集
13304 2024-10-24
Chemical signatures delineate heterogeneous amyloid plaque populations across the Alzheimer's disease spectrum
2024-Jun-03, bioRxiv : the preprint server for biology
研究论文 本文利用先进的化学成像工具和深度学习算法,研究了阿尔茨海默病中不同类型淀粉样斑块的化学特征 首次使用空间生物化学技术对不同斑块形态进行表征,揭示了斑块的异质性及其与疾病病理的关联 NA 研究阿尔茨海默病中淀粉样斑块的异质性及其与疾病病理的关联 阿尔茨海默病中的淀粉样斑块 数字病理 阿尔茨海默病 功能性淀粉样显微镜结合MALDI质谱成像(MSI) 深度学习算法 图像 NA
13305 2024-10-24
Human motion data expansion from arbitrary sparse sensors with shallow recurrent decoders
2024-Jun-03, bioRxiv : the preprint server for biology
研究论文 本文开发了一种深度学习架构,利用浅层循环解码器网络将有限(稀疏)的传感器数据映射到全面的(密集)配置,从而推断未监测的身体部位的运动 本文的创新点在于利用传感器的时间历史信息,通过浅层循环解码器网络将稀疏传感器数据扩展为密集配置,即使只有一个传感器也能重建全面的时间序列测量 本文未提及具体的局限性 研究目的是通过深度学习和稀疏传感技术扩展人体运动数据,以提高数字生物标志物估计的准确性和可用性 研究对象包括控制运动任务、步态模式探索和自由移动环境中的数据 机器学习 NA 深度学习 浅层循环解码器网络 时间序列数据 涉及多种数据集,包括控制运动任务、步态模式探索和自由移动环境
13306 2024-10-24
Automated classification of cellular expression in multiplexed imaging data with Nimbus
2024-Jun-03, bioRxiv : the preprint server for biology
研究论文 本文介绍了使用Nimbus深度学习模型对多重成像数据中的细胞表达进行自动分类 开发了Nimbus模型,该模型无需重新训练即可预测不同细胞类型和组织来源的多重成像数据中的标记物表达 NA 开发一种能够准确预测多重成像数据中标记物表达的深度学习模型 多重成像数据中的细胞表达和标记物表达 计算机视觉 NA 深度学习 深度学习模型 图像 包含197亿个标记物表达注释的Pan-Multiplex数据集,涵盖15种不同细胞类型
13307 2024-10-24
Deep Learning without Weight Symmetry
2024-May-31, ArXiv
PMID:38855537
研究论文 本文介绍了一种名为产品反馈对齐(PFA)的算法,该算法在深度卷积网络中避免了显式的权重对称性,同时实现了与反向传播(BP)相当的性能 提出了产品反馈对齐(PFA)算法,解决了长期存在的权重对称性问题,使得深度卷积网络的学习更加生物学上合理 文章未明确提及PFA算法在实际应用中的局限性 解决深度学习中权重对称性的问题,提高算法的生物学合理性 深度卷积网络中的权重对称性问题 机器学习 NA 深度学习 卷积神经网络(CNN) NA NA
13308 2024-10-24
Deconvolution of polygenic risk score in single cells unravels cellular and molecular heterogeneity of complex human diseases
2024-May-14, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种名为scPRS的几何深度学习模型,利用单细胞染色质可及性数据构建单细胞分辨率的PRS,以增强复杂疾病的生物发现和预测能力 scPRS不仅能够预测疾病风险,还能揭示与疾病相关的细胞类型,并识别细胞类型特异性的遗传基础 NA 开发一种新的方法来解构复杂疾病的单细胞多基因风险评分,以揭示细胞和分子异质性 单细胞多基因风险评分(scPRS)在复杂疾病中的应用,包括2型糖尿病、肥厚型心肌病和阿尔茨海默病 机器学习 NA 几何深度学习 几何深度学习模型 单细胞染色质可及性数据 涉及多种复杂疾病的多个样本
13309 2024-10-24
drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network
2024-May-14, ArXiv
PMID:38800657
研究论文 本文介绍了一种名为drGAT的图深度学习模型,用于药物反应预测和药物机制阐释 drGAT通过利用药物-细胞-基因异构网络,实现了药物反应的二元敏感性预测和药物机制的阐释,性能优于现有模型 NA 提高药物反应预测模型的可解释性,并阐释药物机制 药物反应预测和药物机制阐释 机器学习 NA 图深度学习 图注意力网络(GAT) 异构网络 269种DNA损伤化合物
13310 2024-10-24
Virtual Screening of Molecules via Neural Fingerprint-based Deep Learning Technique
2024-May-09, Research square
研究论文 开发并优化了一种基于卷积神经网络指纹的机器学习药物筛选技术 提出了一种新的基于神经网络指纹的分子虚拟筛选技术,相比传统的固定Morgan指纹,在药物-靶点结合亲和力的二分类任务中表现更优 仅在六个不同的目标蛋白上进行了评估,样本量较小 开发和优化一种高效的分子虚拟筛选技术 药物-靶点结合亲和力的二分类任务 机器学习 NA 卷积神经网络 CNN 分子指纹 使用ZINC15数据库中的随机选择的小分子进行训练,涉及六个不同的目标蛋白
13311 2024-10-24
Filling the gaps: leveraging large language models for temporal harmonization of clinical text across multiple medical visits for clinical prediction
2024-May-07, medRxiv : the preprint server for health sciences
研究论文 本文探讨了利用大型语言模型对临床文本进行时间同步,以提高跨多次医疗访问的临床预测准确性 提出使用大型语言模型(LLMs)进行临床笔记的时间同步,以填补数据中的时间间隔 未提及 提高长期临床预测(如慢性病和死亡率)的准确性 临床笔记的时间同步和跨多次访问的数据整合 自然语言处理 NA 大型语言模型(LLMs) 深度学习模型 文本 未提及
13312 2024-10-24
Diffeomorphic Transformer-based Abdomen MRI-CT Deformable Image Registration
2024-May-04, ArXiv
PMID:38745706
研究论文 本文提出了一种基于微分同胚变换器的深度学习模型,用于腹部MRI-CT图像的可变形图像配准 本文创新性地将Swin变换器集成到卷积神经网络中,用于变形特征提取,并使用微分同胚变形假设来保持拓扑结构 本文仅在50个肝脏病例上进行了回顾性研究,未来需要在更大规模和多样化的数据集上验证模型的泛化能力 开发一种新的深度学习模型,用于直接估计腹部MRI-CT图像的变形向量场,以提高立体定向体部放疗(SBRT)的治疗计划精度 腹部MRI-CT图像的可变形图像配准 计算机视觉 NA 深度学习 卷积神经网络(CNN) 图像 50个肝脏病例
13313 2024-10-24
ntEmbd: Deep learning embedding for nucleotide sequences
2024-May-02, bioRxiv : the preprint server for biology
研究论文 介绍了一种名为ntEmbd的深度学习嵌入工具,用于捕获核苷酸序列中不同特征之间的依赖关系,并学习给定序列的潜在表示 ntEmbd能够隐式学习输入序列特征,解决了长序列中特征间长期依赖关系难以捕捉的问题 NA 开发一种能够有效处理长核苷酸序列的深度学习嵌入方法 核苷酸序列的特征嵌入 机器学习 NA 深度学习 深度学习模型 序列数据 NA
13314 2024-10-24
RECONSTRUCTING RETINAL VISUAL IMAGES FROM 3T FMRI DATA ENHANCED BY UNSUPERVISED LEARNING
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本文提出了一种利用无监督生成对抗网络(GAN)增强3T fMRI数据以重建视网膜视觉图像的新框架 利用无监督GAN在7T和3T fMRI数据集之间进行无配对训练,生成增强的3T fMRI数据,以克服高质量7-Tesla数据稀缺和3-Tesla实验中短时低质量扫描的挑战 需要高成本的7-Tesla fMRI实验数据进行训练,且依赖于无监督学习方法的性能 探索从大脑活动重建人类视觉输入的方法,特别是通过功能性磁共振成像(fMRI) 视网膜视觉图像的重建 计算机视觉 NA 功能性磁共振成像(fMRI) 生成对抗网络(GAN) 图像 涉及多个3-Tesla和7-Tesla fMRI数据集,具体样本数量未明确说明
13315 2024-10-24
Fast MRI Reconstruction Using Deep Learning-based Compressed Sensing: A Systematic Review
2024-Apr-30, ArXiv
PMID:38745700
综述 本文综述了基于深度学习的压缩感知在快速MRI重建中的应用 本文系统地分析了各种基于深度学习的压缩感知MRI技术,包括端到端、展开优化、自监督和联邦学习方法 本文未详细讨论每种方法的具体实现细节和实验结果 探讨基于深度学习的压缩感知技术在提高MRI成像速度中的作用 基于深度学习的压缩感知MRI技术 计算机视觉 NA 压缩感知 深度学习 图像 NA
13316 2024-10-24
Missing Wedge Completion via Unsupervised Learning with Coordinate Networks
2024-Apr-28, bioRxiv : the preprint server for biology
研究论文 本文提出了一种基于坐标网络的无监督学习方法,用于解决冷冻电子断层扫描中的缺失楔形问题 引入了一种无监督学习方法,使用坐标网络直接优化网络权重,无需预训练,减少了重建时间 本文仅提出了概念验证方法,未详细讨论其在实际应用中的广泛适用性 改进冷冻电子断层扫描中的缺失楔形问题,提高重建质量 冷冻电子断层扫描中的缺失楔形问题 计算机视觉 NA 冷冻电子断层扫描 坐标网络 图像 未具体说明样本数量
13317 2024-10-24
Deep learning-driven imaging of cell division and cell growth across an entire eukaryotic life cycle
2024-Apr-27, bioRxiv : the preprint server for biology
研究论文 本文开发了一种基于深度学习的成像框架,用于跟踪真核微生物在有性生殖世代中的细胞分裂和细胞生长 本文提出了一种新的细胞跟踪算法FIEST,通过深度学习视频帧插值增强连续图像中单细胞掩码的重叠,并开发了基于荧光标记Whi5蛋白和新型High-Cdk1活性传感器LiCHI的荧光报告系统 本文仅在酵母中验证了该框架,尚未在其他真核生物中进行广泛验证 开发一种更定量化的方法来研究完整的真核生物生命周期 真核微生物的细胞分裂和细胞生长 计算机视觉 NA 深度学习 卷积神经网络 图像 三个有性生殖世代的酵母样本
13318 2024-10-24
Revolutionizing Postoperative Ileus Monitoring: Exploring GRU-D's Real-Time Capabilities and Cross-Hospital Transferability
2024-Apr-25, medRxiv : the preprint server for health sciences
研究论文 本文探讨了GRU-D模型在术后肠梗阻风险实时评估中的应用及其跨医院转移能力 首次探索了深度学习模型GRU-D在术后肠梗阻风险评估中的应用及其跨电子健康记录系统的转移能力 研究主要集中在术后肠梗阻的预测任务难度和病例发生率上,对训练数据和转移策略的影响关注较少 评估GRU-D模型在术后肠梗阻风险实时评估中的性能及其跨医院的转移能力 术后肠梗阻风险评估 机器学习 NA 深度学习 GRU-D 电子健康记录 7349例结直肠手术
13319 2024-10-24
Exploring the Potential of Structure-Based Deep Learning Approaches for T cell Receptor Design
2024-Apr-24, bioRxiv : the preprint server for biology
研究论文 研究探讨了基于结构的深度学习方法在T细胞受体设计中的潜力 首次探索了两种基于结构的深度学习蛋白质设计方法(ProteinMPNN和ESM-IF)在固定骨架T细胞受体设计中的应用 研究中识别了现有方法的不足之处,需要进一步改进 探索基于结构的深度学习方法在设计T细胞受体以结合目标抗原肽方面的潜力 T细胞受体及其与目标抗原肽的结合 机器学习 癌症 深度学习 ProteinMPNN, ESM-IF 蛋白质3D结构和序列 NA
13320 2024-10-24
Calculating Protein-Ligand Residence Times Through State Predictive Information Bottleneck based Enhanced Sampling
2024-Apr-20, bioRxiv : the preprint server for biology
研究论文 本文提出了一种半自动化的协议,通过基于深度学习的SPIB方法和增强采样技术metadynamics来计算蛋白质-配体复合物的停留时间 本文首次将深度学习方法SPIB与增强采样技术metadynamics结合,用于计算蛋白质-配体复合物的停留时间,并展示了其在多个蛋白质-配体复合物中的应用效果 本文仅在六个蛋白质-配体复合物上进行了验证,未来需要在更多样化的数据集上进行测试 提高药物疗效和理解生物化学中的目标识别机制 蛋白质-配体复合物的停留时间 生物化学 癌症 分子动力学模拟 深度学习模型 蛋白质-配体复合物数据 六个蛋白质-配体复合物,包括抗癌药物Imatinib(Gleevec)与野生型Abl激酶及其耐药突变体的解离
回到顶部