深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 29424 篇文献,本页显示第 13381 - 13400 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
13381 2025-02-20
Author Correction: Deep learning enables fast, gentle STED microscopy
2023-Aug-10, Communications biology IF:5.2Q1
NA NA NA NA NA NA NA NA NA NA NA NA
13382 2025-02-20
Deep learning enables fast, gentle STED microscopy
2023-06-27, Communications biology IF:5.2Q1
研究论文 本文介绍了利用深度学习恢复STED显微镜图像的方法,以减少光漂白和光损伤,并显著降低像素停留时间 通过深度学习技术,实现了对STED显微镜图像的快速、温和恢复,减少了光漂白和光损伤,并显著降低了像素停留时间 NA 研究目的是通过深度学习技术改进STED显微镜成像,减少光漂白和光损伤,并提高成像效率 STED显微镜图像 计算机视觉 NA STED显微镜 深度学习 图像 NA
13383 2025-02-20
Accurate Prediction of Transcriptional Activity of Single Missense Variants in HIV Tat with Deep Learning
2023-Mar-24, International journal of molecular sciences IF:4.9Q2
研究论文 本文提出了一种结合GigaAssay和深度学习的方法,用于预测HIV Tat基因中单错义变体的转录活性 首次将深度学习应用于预测HIV Tat基因单错义变体的转录活性,并取得了高精度的预测结果 目前仅适用于单错义变体,尚未扩展到更复杂的Tat等位基因 更好地理解HIV基因组转录的遗传控制,以帮助理解AIDS的病理和治疗 HIV Tat基因的单错义变体 机器学习 AIDS GigaAssay, 深度学习 深度学习 实验数据 NA
13384 2025-02-19
Bean leaf image dataset annotated with leaf dimensions, segmentation masks, and camera calibration
2025-Apr, Data in brief IF:1.0Q3
研究论文 本文介绍了一个包含6981张普通豆叶图像的数据库,这些图像附有基准标记和已知叶片尺寸的注释 提供了一个包含详细注释的叶片图像数据库,包括图像分割、已知区域、基准标记区域、标记姿态、拍摄条件和相机校准信息 NA 开发用于叶片尺寸测量及相关问题的深度学习算法 普通豆叶 计算机视觉 NA NA NA 图像 6981张图像,涉及612片普通豆叶
13385 2025-02-19
Prediction of Visual Acuity After Cataract Surgery by Deep Learning Methods Using Clinical Information and Color Fundus Photography
2025-Mar, Current eye research IF:1.7Q3
研究论文 本研究探讨了使用术前临床信息和彩色眼底摄影(CFP)通过深度学习方法预测白内障手术后视力的性能 结合了彩色眼底摄影和临床信息的多模态模型,用于预测白内障手术后的视力 多模态输入对预测性能的改善效果不明显,未来研究需要进一步明确多模态输入的影响 预测白内障手术后的视力 接受白内障手术的患者 计算机视觉 白内障 深度学习 Xception和下游神经网络 图像和临床数据 446名患者的673张眼底图像
13386 2025-02-19
DeepPD: A Deep Learning Method for Predicting Peptide Detectability Based on Multi-feature Representation and Information Bottleneck
2025-Mar, Interdisciplinary sciences, computational life sciences
研究论文 本文介绍了一种名为DeepPD的深度学习框架,用于基于多特征表示和信息瓶颈原则预测肽的可检测性 DeepPD结合了多特征表示和信息瓶颈原则,通过进化尺度建模2(ESM-2)提取肽的语义信息,并整合序列和进化信息构建特征空间,有效减少了特征空间的冗余 NA 预测肽的可检测性,以改进蛋白质组学中的基本任务 机器学习 NA 进化尺度建模2(ESM-2) 深度学习 序列数据 多个数据集
13387 2025-02-19
3D Deep Learning for Virtual Orbital Defect Reconstruction: A Precise and Automated Approach
2025-Feb-17, The Journal of craniofacial surgery IF:1.0Q3
研究论文 本研究介绍了一种改进的3D U-Net+++架构,用于眼眶缺损的虚拟重建,旨在提高精度和自动化水平 提出了一种改进的3D U-Net+++架构,特别适用于涉及中线两侧的眼眶缺损,相比传统方法具有更高的精度和自动化水平 研究样本量较小,仅包含300个合成缺损和15个临床病例,需要进一步的大规模验证 开发一种精确且高度自动化的眼眶缺损虚拟重建方法,以辅助术前规划 眼眶缺损的虚拟重建 计算机视觉 眼眶骨折 3D深度学习 3D U-Net+++ 3D CT扫描图像 300个合成缺损和15个临床病例
13388 2025-02-19
Harnessing the synergy of statistics and deep learning for BCI competition 4 dataset 4: a novel approach
2025-Feb-15, Brain informatics
研究论文 本文提出了一种结合统计分析和深度学习的创新方法,用于处理BCI竞赛4数据集4中的ECoG信号,以识别手指运动模式 结合统计分析预处理数据,并设计了一个新的神经网络模型BC4D4,该模型在BCI竞赛4数据集4上取得了优于现有技术的性能 NA 提高从ECoG信号中识别手指运动模式的准确性和效率 BCI竞赛4数据集4中的ECoG信号 机器学习 NA ECoG信号处理 CNN(卷积神经网络)和Dense神经网络 ECoG信号 BCI竞赛4数据集4
13389 2025-02-19
DeepFlood for Inundated Vegetation High-Resolution Dataset for Accurate Flood Mapping and Segmentation
2025-Feb-15, Scientific data IF:5.8Q1
研究论文 本文介绍了DeepFlood,一个用于洪水映射和分割的高分辨率数据集,旨在提高洪水范围的快速准确评估 DeepFlood是一个包含高分辨率载人和无人机航拍图像以及合成孔径雷达(SAR)图像的新数据集,特别标注了淹没植被,这是洪水映射中最具挑战性的区域之一 NA 提高洪水范围的快速准确评估,以支持有效的灾害响应、减灾规划和资源分配 洪水映射和分割 计算机视觉 NA 卷积神经网络(CNNs) CNN 图像 NA
13390 2025-02-19
Exploration of contemporary modernization in UWSNs in the context of localization including opportunities for future research in machine learning and deep learning
2025-Feb-15, Scientific reports IF:3.8Q1
综述 本文探讨了水下无线传感器网络(UWSNs)中的定位技术现代化,包括机器学习与深度学习在未来研究中的机遇 本文不仅回顾了UWSNs定位技术的基础与挑战,还探讨了机器学习和深度学习在提升定位过程中的潜在贡献,并提出了未来研究方向 本文主要基于理论分析和模拟评估,缺乏实际应用场景的验证 提升水下无线传感器网络中的定位技术,以支持环境监测、灾害管理、军事监视等应用 水下无线传感器网络(UWSNs)中的节点定位 机器学习 NA 机器学习(ML)、深度学习(DL) NA 模拟数据 NA
13391 2025-02-19
Enhancing pediatric congenital heart disease detection using customized 1D CNN algorithm and phonocardiogram signals
2025-Feb-15, Heliyon IF:3.4Q1
研究论文 本研究提出了一种定制的1D卷积神经网络(1D-CNN),用于将心音图(PCG)信号分类为正常或异常,为先天性心脏病(CHD)的诊断提供了一种自动化且高效的解决方案 结合现代信号处理与深度学习,提出了一种定制的1D-CNN模型,用于CHD的自动检测,显著提高了诊断的准确性和可靠性 数据集变异性和噪声问题仍然存在,未来需要扩展到多类分类并评估在更广泛医疗问题上的表现 提高先天性心脏病的早期检测效率,提供一种自动化诊断方法 心音图(PCG)信号 数字病理 先天性心脏病 低通和高通滤波(60-650 Hz)、重采样、降噪、数据增强技术(分块、填充、音高变换) 1D-CNN 信号 本地儿科PCG信号和公开可访问的数据集
13392 2025-02-19
In vivo electrophysiology recordings and computational modeling can predict octopus arm movement
2025-Feb-14, Bioelectronic medicine
研究论文 本文通过体内电生理记录和计算模型预测章鱼手臂运动 首次使用碳电极阵列进行单单位电生理记录,结合机器学习模型预测章鱼手臂运动类型 研究仅限于章鱼前神经索,未涉及其他神经回路或更复杂的运动模式 揭示运动回路和控制原理,预测行为 章鱼前神经索和手臂运动 机器学习 NA 单单位电生理记录 深度学习模型 电生理数据 NA
13393 2025-02-19
Optimal surface defect detector design based on deep learning for 3D geometry
2025-Feb-14, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于深度学习的3D几何表面缺陷检测器设计方法,用于钢铁制造环境中的自动检测 通过几何变换生成数据集,并提出了基于性能的模型优化算法,解决了现有方法中图像数据曲率问题和2D产品的局限性 研究仅针对3D几何产品,未涉及其他类型的钢铁产品 开发一种适用于钢铁制造环境的自动表面缺陷检测方法 钢铁制造环境中的3D几何产品 计算机视觉 NA 深度学习 NA 图像 NA
13394 2025-02-19
Model-constrained deep learning for online fault diagnosis in Li-ion batteries over stochastic conditions
2025-Feb-14, Nature communications IF:14.7Q1
研究论文 本文采用深度学习方法开发了一种适用于锂离子电池在不可预测条件下运行的在线故障诊断网络 网络集成了电池模型约束,并采用了一个框架来管理随机系统的演化,从而实现故障的实时确定 NA 探索深度学习在电池实时预测和诊断中的应用,以提高电池安全性和经济效益 锂离子电池 机器学习 NA 深度学习 NA 电池运行数据 来自515辆车的1820万条有效数据
13395 2025-02-19
Multi-step ahead forecasting of daily streamflow based on the transform-based deep learning model under different scenarios
2025-Feb-14, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种基于相对位置编码增强的Informer模型(Rel-Informer),用于多步径流预测,并与标准Informer、Transformer和LSTM模型进行比较 提出了相对位置编码增强的Informer模型(Rel-Informer),并在不同情景下验证其多步径流预测能力 区域建模的精度低于个体建模,尽管通过微调有所改善 研究多步径流预测的深度学习模型在不同情景下的表现 径流预测 机器学习 NA 深度学习 Rel-Informer, Informer, Transformer, LSTM 径流数据 使用公开的CAMELS数据集进行训练和验证
13396 2025-02-19
MultiT2: A Tool Connecting the Multimodal Data for Bacterial Aromatic Polyketide Natural Products
2025-Feb-11, ACS omega IF:3.7Q2
研究论文 本文介绍了一种名为MultiT2的算法,用于整合细菌芳香聚酮类天然产物的多模态数据 首次在天然产物领域应用多模态算法整合生物学相关但数学上不同的数据集,以重组知识图谱 由于天然产物数据的高度碎片化,整合多模态数据具有挑战性 提高天然产物科学的研究效率,特别是在克服繁琐和耗时的过程方面 细菌芳香聚酮类天然产物 机器学习 NA 深度学习 NA 多模态数据 NA
13397 2025-02-19
Development and validation of a deep learning model for morphological assessment of myeloproliferative neoplasms using clinical data and digital pathology
2025-Feb, British journal of haematology IF:5.1Q1
研究论文 本文开发并验证了一种结合临床数据和数字病理学的深度学习模型,用于骨髓增生性肿瘤的形态学评估 提出了一种融合模型,结合了骨髓全切片图像的深度学习模型和临床参数模型,提高了骨髓增生性肿瘤的诊断准确性 模型在外部验证队列中的表现可能受到数据来源和质量的限制 提高骨髓增生性肿瘤的病理评估准确性 骨髓增生性肿瘤(MPNs)患者 数字病理学 骨髓增生性肿瘤 深度学习 融合模型(深度学习模型+临床模型) 图像(骨髓全切片图像)和临床数据 1051名MPN和非MPN患者
13398 2025-02-19
Deep learning-based lung cancer risk assessment using chest computed tomography images without pulmonary nodules ≥8 mm
2025-Jan-24, Translational lung cancer research IF:4.0Q1
研究论文 本研究开发了一种基于深度学习的无标签肺癌风险预测模型,使用低剂量胸部CT图像,针对无大于8毫米非钙化实性肺结节的个体进行验证 该研究创新地使用无结节检测的LDCT图像,通过分析肺实质来预测肺癌风险,避免了传统方法对结节的依赖 需要进一步的前瞻性研究来确定其临床效用和对筛查方案的影响,并在更大、更多样化的人群中进行验证以确保普适性 开发并验证一种基于深度学习的无标签肺癌风险预测模型,以提高低剂量胸部CT筛查的效率 无大于8毫米非钙化实性肺结节的个体 计算机视觉 肺癌 低剂量胸部CT(LDCT) 3D卷积神经网络(3D-CNN, MobileNet v2, SEResNet18, EfficientNet-B0) 图像 训练数据集包括1,064例LDCT扫描(380例肺癌患者和684例对照组),测试数据集包括1,306例LDCT扫描(1,254例低风险个体和52例高风险个体)
13399 2025-02-19
A deep learning algorithm to generate synthetic computed tomography images for brain treatments from 0.35 T magnetic resonance imaging
2025-Jan, Physics and imaging in radiation oncology
研究论文 本研究开发了一种深度学习算法,用于从低场强磁共振成像(MRI)快速生成合成CT(sCT)图像,应用于脑部治疗 首次探索了在低场强MRI下生成脑部sCT图像的深度学习算法,为MRI-only放疗提供了新的可能性 研究样本量较小(56名患者),且仅针对脑部治疗,未涉及其他部位 开发一种快速生成脑部sCT图像的深度学习算法,以支持MRI-only放疗工作流程 脑部MRI图像及其对应的sCT图像 医学影像处理 脑部疾病 深度学习,条件生成对抗网络(cGAN) cGAN MRI图像 56名患者(32名训练,8名验证,16名测试)
13400 2025-02-19
Detection of Body Packs in Abdominal CT scans Through Artificial Intelligence; Developing a Machine Learning-based Model
2025, Archives of academic emergency medicine IF:2.9Q1
研究论文 本研究旨在开发一种基于人工智能的新诊断方法,用于实时检测腹部CT扫描中的体内藏毒包 提出了一种改进的RetinaNet模型,通过使用角度边界框(angled Bbox)来提高检测体内藏毒包的准确性 需要由领域专家精心策划定制数据集以确保成功训练 开发一种基于人工智能的实时检测体内藏毒包的方法 腹部CT扫描图像 计算机视觉 NA 深度学习 RetinaNet 图像 888张腹部CT扫描图像
回到顶部