本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 13381 | 2025-06-07 |
Integrating CBAM and Squeeze-and-Excitation Networks for Accurate Grapevine Leaf Disease Diagnosis
2025-Jun, Food science & nutrition
IF:3.5Q2
DOI:10.1002/fsn3.70377
PMID:40463992
|
研究论文 | 本研究旨在通过深度学习技术自动分类葡萄叶常见病害,包括葡萄痂病、霜霉病及健康叶片 | 将CBAM和Squeeze-and-Excitation Networks集成到预训练模型中,显著提高了分类准确率 | 仅针对两种常见葡萄叶病害进行分类,未涵盖其他可能的病害类型 | 开发基于深度学习的模型,实现葡萄叶病害的自动分类 | 葡萄叶病害(葡萄痂病、霜霉病)及健康叶片 | 计算机视觉 | 葡萄叶病害 | 深度学习 | CNN(集成CBAM和SE模块) | 图像 | NA | NA | NA | NA | NA |
| 13382 | 2025-10-06 |
Multimodal Neuroimaging Based Alzheimer's Disease Diagnosis Using Evolutionary RVFL Classifier
2025-Jun, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3242354
PMID:37022418
|
研究论文 | 提出基于小波变换的多模态MRI和PET融合方法,结合进化算法优化RVFL分类器用于阿尔茨海默病早期诊断 | 采用小波变换融合多模态神经影像数据,并使用进化算法优化RVFL网络的权重和偏置参数 | 仅使用公开ADNI数据集,未在其他独立数据集上验证 | 阿尔茨海默病的早期诊断 | 阿尔茨海默病患者和轻度认知障碍患者 | 医学影像分析 | 阿尔茨海默病 | MRI, PET, 小波变换 | RVFL, ResNet | 医学影像 | ADNI公开数据集 | NA | ResNet-50, RVFL | 准确率 | NA |
| 13383 | 2025-10-06 |
Data Augmentation for Medical Image Classification Based on Gaussian Laplacian Pyramid Blending With a Similarity Measure
2025-Jun, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2023.3307216
PMID:37603476
|
研究论文 | 提出一种基于高斯拉普拉斯金字塔混合与相似性度量的医学图像数据增强方法,用于乳腺癌组织病理学图像分类 | 结合高斯拉普拉斯金字塔和金字塔混合概念,引入基于相似性度量的图像混合方法,保持图像结构特性并捕获同类患者图像间的变异性 | NA | 解决医学数据集中标记数据稀缺和数据不平衡问题,提高乳腺癌诊断准确性 | 乳腺癌组织病理学图像 | 计算机视觉 | 乳腺癌 | 数据增强,生成式人工智能 | 深度学习,迁移学习 | 医学图像 | 三个不同的医学数据集 | NA | 预训练模型拼接架构 | NA | NA |
| 13384 | 2025-06-07 |
Comparison of Sarcopenia Assessment in Liver Transplant Recipients by Computed Tomography Freehand Region-of-Interest versus an Automated Deep Learning System
2025-Jun, Clinical transplantation
IF:1.9Q3
DOI:10.1111/ctr.70201
PMID:40465826
|
research paper | 本研究比较了在肝移植受者中通过CT手动ROI和自动化深度学习系统评估肌肉减少症的两种方法 | 首次直接比较了手动ROI和深度学习系统在肌肉减少症评估中的表现,并分析了它们与住院时间的关联 | 样本量较小(50人),且为单中心研究 | 比较两种肌肉减少症评估方法在预测肝移植患者临床结局方面的效果 | 肝移植受者 | digital pathology | liver disease | computed tomography (CT) | deep learning | medical image | 50名肝移植受者 | NA | NA | NA | NA |
| 13385 | 2025-06-07 |
Ultrasound measurement of relative tongue size and its correlation with tongue mobility for healthy individuals
2025-Jun-01, JASA express letters
IF:1.2Q3
DOI:10.1121/10.0036838
PMID:40478168
|
研究论文 | 本研究介绍了一种基于超声的测量相对舌大小的方法,称为uRTS,作为MRI方法的成本效益替代方案 | 提出了一种新的基于超声的测量方法uRTS,并使用深度学习提取舌轮廓,验证了其与MRI测量结果的高度相关性 | 样本量较小(仅10名说话者),可能影响结果的普遍性 | 评估相对舌大小与舌运动速度之间的关系,开发更经济的测量方法 | 健康个体的舌头 | 医学影像分析 | NA | 超声测量,深度学习 | 深度学习(未指定具体模型) | 超声影像 | 10名说话者 | NA | NA | NA | NA |
| 13386 | 2025-06-07 |
Beyond episodic early warning systems: a continuous clinical alert system for early detection of in-hospital deterioration
2025-May-21, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.05.20.25327940
PMID:40475141
|
research paper | 开发了一种基于可穿戴设备的深度学习模型,用于早期检测住院患者的病情恶化 | 使用仅9个输入的可穿戴设备数据,开发了一种RNN模型,能够比传统早期预警系统更早识别病情恶化 | 数据缺失率为4-8%,且排除了SpO2数据 | 减少住院患者病情恶化的延迟识别,提高临床警报系统的效率 | 888名成人非ICU住院患者 | machine learning | geriatric disease | wearable biosensors | RNN | biosensor data | 888 adult non-ICU inpatient visits in four hospitals | NA | NA | NA | NA |
| 13387 | 2025-06-07 |
Detecting Arrhythmogenic Right Ventricular Cardiomyopathy From the Electrocardiogram Using Deep Learning
2025-May-06, JACC. Clinical electrophysiology
DOI:10.1016/j.jacep.2025.04.003
PMID:40471767
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 13388 | 2025-06-07 |
Deep Learning-based Anatomy-Aware Morph Model for Registration of Prostate Whole-Mount Histopathology to MRI
2025-May, Radiology. Imaging cancer
DOI:10.1148/rycan.240336
PMID:40445100
|
研究论文 | 开发并评估了一种基于深度学习的创新方法,用于配准前列腺术前MRI和全切片组织病理学(WMHP)图像 | 提出了一种结合注意力机制和卷积神经网络的混合模型(Anatomy-Aware Morph模型),用于多模态前列腺图像配准,显著优于现有VoxelMorph方法 | 研究为回顾性设计,样本量相对有限(315例患者) | 实现前列腺术前MRI与术后病理图像的精准配准,辅助前列腺癌病灶映射 | 前列腺MRI和全切片组织病理学图像 | 数字病理 | 前列腺癌 | 深度学习图像配准 | 混合注意力机制与CNN(Anatomy-Aware Morph模型) | 医学影像(MRI与病理切片图像) | 315例患者(270训练集/45测试集),含160张测试图像 | NA | NA | NA | NA |
| 13389 | 2025-06-07 |
Deep Learning-Based Automated Detection of Oral Leukoplakia in Clinical Imaging
2025-May, Cureus
DOI:10.7759/cureus.83368
PMID:40462818
|
研究论文 | 本研究开发并验证了一种基于深度学习的系统,用于自动识别口腔白斑(OLK),以解决临床实践中的诊断挑战 | 使用19种CNN架构进行比较分析,并选择经过微调的EfficientNetB0作为最优模型,通过CAM可视化决策区域,实现了高精度和可解释性 | 数据集仅包含446张经组织病理学确认的口腔白斑病例图像和1,041张正常口腔黏膜图像,样本量相对有限 | 开发并验证一种基于深度学习的系统,用于自动识别口腔白斑,以解决临床实践中的诊断挑战 | 口腔白斑(OLK)的临床图像 | 计算机视觉 | 口腔癌 | 深度学习 | CNN, EfficientNetB0 | 图像 | 446张口腔白斑病例图像和1,041张正常口腔黏膜图像 | NA | NA | NA | NA |
| 13390 | 2025-06-07 |
Trials and tribulations: Developing an artificial intelligence for screening malaria parasite from peripheral blood smears
2025 May-Jun, Medical journal, Armed Forces India
DOI:10.1016/j.mjafi.2023.10.007
PMID:40463611
|
研究论文 | 本研究旨在开发一种人工智能技术,用于自动化检测外周血涂片中的疟原虫 | 首次尝试开发一个完整模块,用于从自动化显微摄影/全切片图像中筛查疟原虫 | 模型A、B和C的性能在敏感性或特异性方面存在不足 | 开发人工智能技术以自动化疟原虫检测过程 | 外周血涂片中的疟原虫 | 数字病理学 | 疟疾 | 深度学习方法 | DCNN, Inception V3, Watershed Transform | 图像 | 352张Leishman-Giemsa染色的外周血涂片图像 | NA | NA | NA | NA |
| 13391 | 2025-06-07 |
Revolutionizing the diagnosis of dental caries using artificial intelligence-based methods
2025-May, Journal of conservative dentistry and endodontics
DOI:10.4103/JCDE.JCDE_172_25
PMID:40463673
|
review | 本文综述了人工智能在龋齿诊断中的应用及其潜力 | 探讨了AI如何通过机器学习和深度学习技术改进龋齿诊断的精确性和效率 | 讨论了当前AI在牙科诊断中面临的挑战和限制 | 探索人工智能在龋齿早期诊断和病变检测中的应用 | 龋齿诊断的影像数据和临床记录 | digital pathology | dental caries | machine learning, deep learning | NA | image, clinical records | NA | NA | NA | NA | NA |
| 13392 | 2025-06-07 |
Deep learning model for detecting high-grade dysplasia in colorectal adenomas
2025-Apr, Journal of pathology informatics
DOI:10.1016/j.jpi.2025.100441
PMID:40463412
|
研究论文 | 本研究开发了一种深度学习模型,用于区分结直肠腺瘤中的低级别异型增生(LGD)和高级别异型增生(HGD) | 首次使用深度学习模型对结直肠腺瘤的异型增生程度进行准确分类 | 样本量相对较小,可能影响模型的泛化能力 | 提高结直肠腺瘤异型增生程度的自动诊断准确性 | 结直肠腺瘤组织切片 | 数字病理学 | 结直肠癌 | 深度学习 | ResNet34 | 病理图像 | 200张组织切片(71例HGD,129例LGD) | NA | NA | NA | NA |
| 13393 | 2025-06-07 |
Efficient merging and validation of deep learning-based nuclei segmentations in H&E slides from multiple models
2025-Apr, Journal of pathology informatics
DOI:10.1016/j.jpi.2025.100443
PMID:40463413
|
研究论文 | 本研究提出了一种整合多种深度学习模型进行H&E切片中细胞核分割的新方法,以提高细胞类型定量的准确性 | 提出了一种新颖的整合多种深度学习模型的方法,用于细胞核分割,相比单一模型和人工病理学检查,提高了细胞类型比例的准确性和基因表达变异的解释能力 | 深度学习模型在分割特定细胞类型方面仍存在局限性,且某些模型在特定任务上可能比其他模型更有效 | 开发一种高效整合多种深度学习模型的方法,以改进H&E切片中细胞核分割和细胞类型定量 | 471例正常前列腺样本的H&E切片 | 数字病理学 | 前列腺癌 | 深度学习 | 多种深度学习模型 | 图像 | 471例正常前列腺样本 | NA | NA | NA | NA |
| 13394 | 2025-06-07 |
Burnout crisis in Chinese radiology: will artificial intelligence help?
2025-Mar, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-11206-4
PMID:39567429
|
research paper | 评估人工智能(AI)软件使用与中国医院放射科职业倦怠之间的相关性 | 首次量化研究AI软件使用与放射科人员职业倦怠的关系,并发现AI使用时长与倦怠程度呈显著负相关 | 研究设计为横断面研究,无法确定因果关系 | 探讨AI在减轻放射科人员职业倦怠方面的作用 | 中国68家公立医院的放射科医生和技术人员 | digital pathology | NA | 问卷调查(MBI-HSS量表和AI使用问卷) | NA | survey data | 522名放射科工作人员 | NA | NA | NA | NA |
| 13395 | 2025-06-07 |
Colorectal cancer classification using weakly annotated whole slide images: Multiple instance learning optimization study
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109649
PMID:39798507
|
研究论文 | 本研究利用深度学习技术,通过弱标注的组织病理学全切片图像(WSIs)研究结直肠癌(CRC)分类问题 | 提出了与多实例学习(MIL)集成的WSI标签预测函数,显著提高了WSI级别分类的性能 | NA | 开发高效的计算机辅助诊断(CAD)系统,用于结直肠癌的早期检测和分类 | 结直肠癌的组织病理学全切片图像 | 数字病理学 | 结直肠癌 | 深度学习 | 多实例学习(MIL) | 图像 | NA | NA | NA | NA | NA |
| 13396 | 2025-06-07 |
Quantification of coronary artery calcification in systemic sclerosis using visual ordinal and deep learning scoring: Association with systemic sclerosis clinical features
2025-02, Seminars in arthritis and rheumatism
IF:4.6Q1
DOI:10.1016/j.semarthrit.2024.152598
PMID:39613484
|
research paper | 本研究探讨了系统性硬化症(SSc)临床特征与冠状动脉钙化程度及进展之间的关联 | 结合视觉序数评分和深度学习(DeepCAC)方法量化冠状动脉钙化,并探索其与SSc临床特征的关联 | 单中心回顾性研究,样本量有限(86例和171例) | 研究SSc临床特征与冠状动脉钙化进展的关系 | 系统性硬化症患者 | digital pathology | cardiovascular disease | DeepCAC | deep learning | medical imaging | 86例(主要目标)和171例(次要目标)SSc患者 | NA | NA | NA | NA |
| 13397 | 2025-06-07 |
PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound
2025-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3047410
PMID:40463735
|
research paper | 提出了一种轻量级交互式分割模型PRISM Lite,用于实时从3D超声图像中分割胎盘 | 设计了一个轻量级模型,适用于临床使用,能够在资源有限的环境中实时运行,并通过人机交互实现迭代改进 | 尽管模型在分割精度上表现优异,但其在低资源环境或移动设备上的实际应用仍需进一步验证 | 开发一种适用于临床的轻量级交互式胎盘分割模型,以提高分割效率和质量 | 3D超声图像中的胎盘 | digital pathology | pregnancy outcomes | 3D ultrasound (3DUS) | lightweight interactive segmentation model | 3D image | NA | NA | NA | NA | NA |
| 13398 | 2025-06-07 |
Autofluorescence Virtual Staining System for H&E Histology and Multiplex Immunofluorescence Applied to Immuno-Oncology Biomarkers in Lung Cancer
2025-01-01, Cancer research communications
IF:2.0Q3
DOI:10.1158/2767-9764.CRC-24-0327
PMID:39636222
|
research paper | 本研究展示了通过结合高通量高光谱荧光显微镜和机器学习,从未染色的非小细胞肺癌组织的自发荧光图像生成虚拟H&E染色和多重免疫荧光染色的可行性 | 将虚拟染色技术从AF扩展到不同疾病(肺癌)和染色模式(mIF),并开发了新的虚拟H&E和多重免疫荧光染色 | 虚拟染色在各种评估指标上表现中等至良好,但未提及是否在所有情况下都优于传统染色方法 | 探索虚拟染色在数字病理学中的潜力,以促进空间生物学研究,提高临床工作流程的效率和可靠性 | 非小细胞肺癌组织 | digital pathology | lung cancer | hyperspectral fluorescence microscopy, machine learning | deep learning | image | NA | NA | NA | NA | NA |
| 13399 | 2025-06-07 |
Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer
2025-Jan, Radiology
IF:12.1Q1
DOI:10.1148/radiol.240238
PMID:39807983
|
research paper | 本研究探讨了使用深度学习从非对比MRI序列生成模拟对比增强MRI的可行性,并评估其在评估临床显著性前列腺癌中的潜在价值 | 利用深度学习模型(pix2pix算法)从非对比MRI序列合成对比增强MRI扫描,为减少对比剂使用提供可能 | 研究为回顾性设计,且样本量有限,可能影响结果的普遍性 | 评估深度学习生成模拟对比增强MRI的可行性及其在前列腺癌评估中的应用价值 | 疑似前列腺癌的男性患者 | digital pathology | prostate cancer | MRI | pix2pix algorithm | image | 567名男性患者(平均年龄66岁±11) | NA | NA | NA | NA |
| 13400 | 2025-06-07 |
Investigating the Key Trends in Applying Artificial Intelligence to Health Technologies: A Scoping Review
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0322197
PMID:40372995
|
综述 | 本文探讨了人工智能在医疗技术中的关键趋势,重点关注其在诊断和治疗中的变革潜力以及面临的挑战 | 系统总结了2020年至2024年间68项关于医疗AI的研究,揭示了AI在医疗流程中的准确性和时效性提升 | 存在数据整合、处理错误、决策制定和患者安全方面的挑战,且需要更深入的伦理和隐私考量 | 研究人工智能在医疗健康领域的整合及其未来发展的潜力 | 医疗健康领域的人工智能应用 | 人工智能 | NA | 深度学习方法和机器学习 | NA | 学术研究数据 | 68项学术研究 | NA | NA | NA | NA |