本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13721 | 2024-08-05 |
Automated Patient Registration in Magnetic Resonance Imaging Using Deep Learning-Based Height and Weight Estimation with 3D Camera: A Feasibility Study
2024-Jul, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.01.029
PMID:38368163
|
研究论文 | 本研究比较了一种基于深度学习的3D相机估计患者身高和体重的方法与医学技术人员的估计准确性 | 提出了一种新的基于深度学习的3D相机方法,能比传统方法更准确地估计患者的身高和体重 | 本研究为回顾性研究,结果需要在更大规模的前瞻性研究中进一步验证 | 评估基于深度学习的3D相机在MRI程序中患者身高和体重估计的有效性 | 161名成年患者的身高和体重数据 | 医学影像学 | NA | 深度学习,3D摄像 | NA | 深度图像 | 161名患者 |
13722 | 2024-08-05 |
Interpretation of SPECT wall motion with deep learning
2024-Jul, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
IF:3.0Q2
DOI:10.1016/j.nuclcard.2024.101881
PMID:38723886
|
研究论文 | 本研究开发了一种新型深度学习工作流,以解读单光子发射计算机断层扫描(SPECT)的壁运动 | 使用深度学习模型提高了SPECT壁运动评估的准确性,克服了传统方法的局限性 | 研究可能受限于患者样本特性及模型在其他数据集上的外部验证 | 提升对静息SPECT壁运动的解读能力 | 包含1038名接受静息心电图门控SPECT和超声心动图的患者 | 数字病理学 | 心血管疾病 | 深度学习 | DL模型 | 图像 | 1038名患者 |
13723 | 2024-08-05 |
Opening the Black Box: Spatial Transcriptomics and the Relevance of Artificial Intelligence-Detected Prognostic Regions in High-Grade Serous Carcinoma
2024-Jul, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2024.100508
PMID:38704029
|
研究论文 | 本文利用空间转录组学解析人工智能识别的高等级浆液性癌症预后区域 | 本文创新性地应用空间转录组学分析AI识别的肿瘤区域,揭示与患者结果相关的生物特征 | 研究样本量较小,仅包含16名患者,可能影响结果的普遍适用性 | 研究高等级浆液性癌症与预后之间的关系,特别是肿瘤区域的生物特征 | 涉及16名高等级浆液性癌症患者,重点研究不同预后组之间的肿瘤区域 | 数字病理学 | 卵巢癌 | 空间转录组学 | AI模型 | 生物组织样本 | 16名患者(每个预后组8名) |
13724 | 2024-08-07 |
A deep learning model accurately predicts 1-year mortality but at the risk of unfairness
2024-Jul, Nature aging
IF:17.0Q1
DOI:10.1038/s43587-024-00665-5
PMID:38956193
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13725 | 2024-08-05 |
Ensemble model for grape leaf disease detection using CNN feature extractors and random forest classifier
2024-Jun-30, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e33377
PMID:39027444
|
研究论文 | 本文提出了一种集成模型,以使用CNN特征提取器和随机森林分类器检测葡萄叶病害 | 该文章结合了多种CNN模型作为特征提取器,采用并行配置以提取更丰富的特征,克服了有限数据集的不足 | 文章解决了有限数据集的问题,但局限于特定的葡萄叶数据集 | 本研究旨在提高有限数据集情况下的葡萄叶病害检测性能 | 研究对象是用于检测葡萄叶病害的图像数据集 | 计算机视觉 | NA | 卷积神经网络 (CNN) | 集成模型 | 图像 | 葡萄叶数据集分为原始集和修改集 |
13726 | 2024-08-05 |
Deep learning-based automatic measurement system for patellar height: a multicenter retrospective study
2024-May-31, Journal of orthopaedic surgery and research
IF:2.8Q1
DOI:10.1186/s13018-024-04809-6
PMID:38822361
|
研究论文 | 本文开发了一种基于深度学习的膝盖髌骨高度自动测量系统,并评估其性能和泛化能力 | 该研究首次应用深度学习模型自动测量髌骨高度,显示出与手动测量相当的准确性和强泛化能力 | 本研究中数据集的选择可能存在偏差,未来需检验不同数据集以优化模型 | 研究旨在提高髌骨高度测量的准确性和效率,以辅助膝关节疾病的评估和治疗 | 本文的研究对象为来自三家三级医院的膝关节X光影像数据 | 数字病理学 | NA | 深度学习 | HRNet和残差网络(ResNet) | 图像 | 共计2,341例膝关节X光图像 |
13727 | 2024-08-05 |
Enhancing ECG-based heart age: impact of acquisition parameters and generalization strategies for varying signal morphologies and corruptions
2024, Frontiers in cardiovascular medicine
IF:2.8Q2
DOI:10.3389/fcvm.2024.1424585
PMID:39027006
|
研究论文 | 本研究探讨了ECG心脏年龄估计中的数据采集参数及其对不同信号形态和干扰的影响 | 提出了使用预训练和微调网络来提高不同人群的ECG年龄估计的可行性,并进行了一项全面的实证研究以确定采样率和信号持续时间的阈值 | 尚未深入评估神经网络在ECG年龄估计中的表现,尤其是在各种采集参数的影响下 | 旨在提高ECG年龄估计的准确性和可靠性 | 主要研究对象为不同人种的ECG信号及其年龄估计 | 数字病理学 | 心血管疾病 | 深度学习 | 神经网络 | ECG信号 | NA |
13728 | 2024-08-05 |
Advancements in urban scene segmentation using deep learning and generative adversarial networks for accurate satellite image analysis
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0307187
PMID:39024353
|
研究论文 | 文章提出了一种条件生成对抗网络(cGAN)用于从卫星图像创建高分辨率城市地图 | 提出的cGAN框架结合了语义和空间数据,能够生成高质量的城市场景,保持关键细节 | NA | 研究城市场景分割中的图像到图像翻译问题 | 卫星图像与城市场景之间的转换 | 计算机视觉 | NA | cGAN | 生成对抗网络 | 图像 | ISPRS Potsdam和Vaihingen数据集的基准测试 |
13729 | 2024-08-05 |
Biobjective gradient descent for feature selection on high dimension, low sample size data
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0305654
PMID:39024199
|
研究论文 | 本文提出了一种新的方法,将特征选择与深度神经网络的训练过程结合。 | 创新点在于将基于稀疏化的特征选择整合到深度神经网络的训练中,并使用约束双目标梯度下降法。 | 文中未提及特定的局限性 | 研究深度学习在高维低样本数据上的特征选择问题。 | 使用人工和真实数据集评估新方法的有效性。 | 机器学习 | 稀有疾病 | 深度学习 | 深度神经网络 | 人工和真实数据集 | 文中未提供具体样本数量 |
13730 | 2024-08-05 |
Diabetic retinopathy identification based on multi-source-free domain adaptation
2024, International journal of ophthalmology
IF:1.9Q2
DOI:10.18240/ijo.2024.07.03
PMID:39026925
|
研究论文 | 该研究旨在开发一种无源领域适应的方法,以有效识别糖尿病视网膜病变(DR) | 提出了一种多源无源领域适应方法,通过生成合成伪标签来处理无标记数据 | NA | 旨在克服糖尿病视网膜病变识别中的数据标记、隐私和大量标记数据的挑战 | 无标记数据集的糖尿病视网膜病变识别 | 计算机视觉 | 糖尿病视网膜病变 | 无源领域适应(SFDA) | NA | 图像 | 利用三个彩色眼底照片数据集(APTOS2019、DDR和EyePACS)进行验证 |
13731 | 2024-08-05 |
Spotting Culex pipiens from satellite: modeling habitat suitability in central Italy using Sentinel-2 and deep learning techniques
2024, Frontiers in veterinary science
IF:2.6Q1
DOI:10.3389/fvets.2024.1383320
PMID:39027906
|
研究论文 | 本研究通过深度学习技术预测意大利中部的 Culex pipiens 栖息地适宜性 | 该研究开发了多种深度学习模型(如 DCNN 和 MAGAT),结合 Sentinel-2 卫星数据,提供了新的方式来检测蚊子的潜在分布与栖息地适宜性 | 研究只集中在意大利中部的特定地区,可能无法推广到其他地区 | 预测 Culex pipiens 在意大利中部的潜在分布 | 主要研究对象为 Culex pipiens 蚊子及其栖息地 | 机器学习 | NA | Sentinel-2, 深度卷积神经网络 (DCNN), 多邻接图注意力网络 (MAGAT) | 深度卷积神经网络 (DCNN), 多邻接图注意力网络 (MAGAT) | 图像 | 2,555 次昆虫学采集,108,064 张 20 米分辨率的图像补丁 |
13732 | 2024-08-05 |
ASD-GResTM: Deep Learning Framework for ASD classification using Gramian Angular Field
2023-Dec, Proceedings. IEEE International Conference on Bioinformatics and Biomedicine
DOI:10.1109/bibm58861.2023.10385743
PMID:39021439
|
研究论文 | 本文设计并开发了一个深度学习框架,用于基于功能磁共振成像(fMRI)数据分类自闭症谱系障碍(ASD)与神经典型大脑 | 引入了一种新策略,将提取的时间序列数据转化为Gramian Angular Field (GAF),并锁定了数据中的时间和空间模式 | 未提及特定的局限性 | 旨在通过深度学习方法提高自闭症的分类准确性 | 基于功能磁共振成像(fMRI)数据的自闭症与神经典型脑的分类 | 计算机视觉 | 自闭症谱系障碍 | fMRI | 卷积神经网络(CNN)及长短期记忆网络(LSTM) | 图像 | 使用了公开的ABIDE-I基准数据集进行训练、验证和测试 |
13733 | 2024-08-07 |
A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head
2019-10-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-019-51062-7
PMID:31595006
|
研究论文 | 本文提出了一种深度学习方法,用于去噪视神经头部的光学相干断层扫描(OCT)图像 | 使用自定义深度学习网络,能够成功去噪未见过的单帧OCT B扫描,提高图像质量和组织可见性 | NA | 开发一种能够在减少扫描时间的同时提高OCT图像质量的方法 | 视神经头部(ONH)组织的光学相干断层扫描(OCT)图像 | 计算机视觉 | NA | 深度学习 | 自定义深度学习网络 | 图像 | 训练数据包括2,328个'干净B扫描'及其对应的'噪声B扫描',测试数据包括1,552个未见过的单帧B扫描 |
13734 | 2024-08-07 |
Artificial intelligence reveals environmental constraints on colour diversity in insects
2019-10-07, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-019-12500-2
PMID:31591404
|
研究论文 | 本文利用深度学习技术分析了台湾近2000种蛾类的20,000多张图像,揭示了颜色特征在生态梯度上的微妙但稳健的变化模式 | 首次使用深度学习模型生成2048维特征向量,准确预测每个物种的平均海拔,并发现高海拔生物群落内的图像特征变化较小 | NA | 解释动物在广阔地理尺度上的颜色变化 | 台湾近2000种蛾类的颜色特征 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 图像 | 20,000多张图像,近2,000种蛾类 |
13735 | 2024-08-07 |
Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study
2019-10, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.26723
PMID:30896065
|
研究论文 | 本研究评估了深度卷积神经网络(DCNN)在从磁共振成像(MR)图像中区分脑膜瘤组织病理学分级的诊断准确性 | 使用Inception-V3 DCNN在ADC图上提供了最佳的诊断准确性结果,AUC达到0.94 | DCNN在PCT1 W图像上的区分准确性较低 | 确定深度卷积神经网络在从MR图像中区分脑膜瘤组织病理学分级的诊断准确性 | 117名脑膜瘤患者,包括79名WHO I级,32名WHO II级和6名WHO III级 | 计算机视觉 | 脑膜瘤 | 磁共振成像(MR) | 深度卷积神经网络(DCNN) | 图像 | 117名脑膜瘤患者 |
13736 | 2024-08-07 |
Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI
2019-10, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2019.07.012
PMID:31323317
|
研究论文 | 本文提出了一种基于残差块深度神经网络(ResDNN)的数据驱动方法,用于模拟扩散加权磁共振成像(DW-MRI)信号与真实结构之间的非线性映射,以重建局部白质纤维结构。 | 本文采用了一种新颖的数据驱动方法,通过深度神经网络回归模型,有效地填补了DW-MRI信号与真实结构之间的差距。 | NA | 研究目的是通过深度学习技术揭示DW-MRI中未被充分利用的信息,以提高白质纤维结构的重建精度。 | 研究对象包括松鼠猴脑部的3D组织学数据和人类连接组项目中的12名受试者的扫描重扫描数据。 | 计算机视觉 | NA | 扩散加权磁共振成像(DW-MRI) | 残差块深度神经网络(ResDNN) | 图像 | 训练数据包括两个松鼠猴脑部的3D组织学数据集,验证数据包括第三个松鼠猴脑部数据集和人类连接组项目中的12名受试者的数据。 |
13737 | 2024-08-07 |
Automatic choroidal segmentation in OCT images using supervised deep learning methods
2019-09-16, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-019-49816-4
PMID:31527630
|
研究论文 | 本文提出了一系列基于补丁和全卷积的深度学习方法,用于自动分割OCT图像中的脉络膜边界 | 利用深度学习方法自动分割脉络膜边界,提高了分析效率和准确性 | 需要进一步优化网络架构和对比度增强方法以最大化性能 | 开发可靠和准确的方法来自动分割OCT图像中的脉络膜组织边界 | OCT图像中的脉络膜边界 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 大量OCT图像 |
13738 | 2024-08-07 |
Traffic Speed Prediction: An Attention-Based Method
2019-Sep-05, Sensors (Basel, Switzerland)
DOI:10.3390/s19183836
PMID:31491921
|
研究论文 | 本文提出了一种基于时间聚类和层次注意力机制的交通速度预测方法(TCHA),以解决传统深度学习方法在交通速度预测中忽略空间和环境因素的问题 | 该方法通过时间聚类区分交通环境,并利用层次注意力机制提取每个时间步的特征,从而提高预测准确性 | NA | 提高智能交通系统中的短期交通速度预测准确性 | 交通速度预测 | 计算机视觉 | NA | 深度学习 | 注意力机制 | 交通数据 | 特定区域的交通数据 |
13739 | 2024-08-07 |
Predicting functional variants in enhancer and promoter elements using RegulomeDB
2019-09, Human mutation
IF:3.3Q2
DOI:10.1002/humu.23791
PMID:31228310
|
研究论文 | 本文介绍了一种名为Score of Unified Regulatory Features (SURF)的计算模型,用于预测增强子和启动子元件中的功能性变异 | SURF模型在第五次基因组解释关键评估的“调控饱和”挑战中表现最佳,并且通过RegulomeDB查询的功能基因组数据特征提高了预测准确性 | NA | 开发和验证一种新的计算模型,用于预测调控区域中的功能性变异 | 增强子和启动子元件中的功能性变异 | NA | NA | 大规模并行报告分析 | 深度学习模型 | DNA序列 | NA |
13740 | 2024-08-07 |
Robust Self-Adaptation Fall-Detection System Based on Camera Height
2019-Aug-30, Sensors (Basel, Switzerland)
DOI:10.3390/s19173768
PMID:31480384
|
研究论文 | 本研究构建了一个包含多种日常活动和跌倒事件的数据集,并研究了相机/传感器高度对跌倒检测准确性的影响 | 提出了一种增强跟踪和去噪的Alex-Net(ETDA-Net)来提高跟踪和去噪性能,并分类跌倒和非跌倒事件 | NA | 研究相机/传感器高度对跌倒检测准确性的影响 | 日常活动和跌倒事件 | 计算机视觉 | NA | 深度学习 | CNN | 图像 | 数据集中的每个活动由八名参与者在八个方向上进行,并使用深度相机在五个不同高度拍摄 |