本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 13721 | 2025-04-25 |
Advancing Bioactivity Prediction Through Molecular Docking and Self-Attention
2024-Dec, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3448455
PMID:39178096
|
研究论文 | 该研究通过分子对接和自注意力机制提升生物活性预测的准确性 | 首次将药物-靶标相互作用整合到生物活性预测中,设计了DTIGN网络,并利用自注意力机制识别分子对接结果中的结合口袋和姿态 | 研究中使用的原生结构数据有限,可能影响模型的泛化能力 | 提升生物活性预测的准确性,以优化药物发现早期阶段的候选分子筛选 | 蛋白质-配体复合物 | 机器学习 | NA | 分子对接,半监督学习 | DTIGN(药物-靶标相互作用图神经网络),多头自注意力机制 | 蛋白质-配体复合物数据,晶体结构数据库数据 | 建立了独特的基准数据集,与9种领先的基于深度学习的生物活性预测方法进行了比较 | NA | NA | NA | NA |
| 13722 | 2025-04-25 |
Transfer Contrastive Learning for Raman Spectroscopy Skin Cancer Tissue Classification
2024-Dec, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3451950
PMID:39208055
|
research paper | 本文提出了一种转移对比学习范式(TCLP),用于解决拉曼光谱(RS)信号在皮肤癌组织分类中的稀缺性和噪声问题 | 结合迁移学习和对比学习,利用来自不同RS设备的相似领域数据预训练模型,并通过对比学习增强RS信号以学习可靠的特征表示 | 未提及具体样本量及噪声水平对模型性能的具体影响 | 提高拉曼光谱信号在皮肤癌组织分类中的准确性和可靠性 | 皮肤癌组织 | machine learning | skin cancer | Raman spectroscopy (RS) | deep learning | RS signals | NA | NA | NA | NA | NA |
| 13723 | 2025-04-25 |
Geometric Molecular Graph Representation Learning Model for Drug-Drug Interactions Prediction
2024-Dec, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3453956
PMID:39226203
|
研究论文 | 提出了一种基于几何分子图表示学习的模型(Mol-DDI),用于预测药物-药物相互作用 | 仅考虑分子的共价和非共价键信息,利用大规模模型的预训练思想学习药物分子表示,并在微调过程中预测药物相互作用 | 难以发现新药的相互作用 | 预测潜在的药物相互作用,为系统有效的治疗提供药物组合策略 | 药物分子 | 机器学习 | NA | 几何分子图表示学习 | Mol-DDI | 分子图数据 | 三个数据集 | NA | NA | NA | NA |
| 13724 | 2025-04-25 |
DS-MS-TCN: Otago Exercises Recognition With a Dual-Scale Multi-Stage Temporal Convolutional Network
2024-Dec, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3455426
PMID:39240747
|
research paper | 该研究提出了一种双尺度多阶段时间卷积网络(DS-MS-TCN),用于识别老年人日常生活中的Otago锻炼项目(OEP),以提高识别准确性和鲁棒性 | 首次提出通过识别活动的每个重复来增强人类活动识别(HAR)系统的新视角,并设计了一种双尺度多阶段时间卷积网络(DS-MS-TCN)进行两级序列到序列分类 | 研究样本量较小,实验室环境与家庭环境的数据可能存在差异 | 提高Otago锻炼项目(OEP)识别的准确性和鲁棒性,以支持老年人的康复训练 | 社区居住的老年人 | human activity recognition | geriatric disease | Inertial Measurement Unit (IMU) | Dual-Scale Multi-Stage Temporal Convolutional Network (DS-MS-TCN) | sensor data | 36名老年人在实验室环境中参与,另有7名老年人在家庭环境中进行评估 | NA | NA | NA | NA |
| 13725 | 2025-04-25 |
MLVICX: Multi-Level Variance-Covariance Exploration for Chest X-Ray Self-Supervised Representation Learning
2024-Dec, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3455337
PMID:39240749
|
research paper | 提出了一种名为MLVICX的自监督学习方法,用于从胸部X光图像中学习丰富的表示 | 引入了一种新颖的多级方差和协方差探索策略,能够有效检测具有诊断意义的模式并减少冗余 | NA | 提升胸部X光图像的自监督表示学习性能,以支持精准医疗诊断和全面图像分析 | 胸部X光图像 | digital pathology | lung cancer | self-supervised learning (SSL) | NA | image | NIH-Chest X-ray, Vinbig-CXR, RSNA pneumonia, SIIM-ACR Pneumothorax datasets | NA | NA | NA | NA |
| 13726 | 2025-04-25 |
DPFNet: Fast Reconstruction of Multi-Coil MRI Based on Dual Domain Parallel Fusion Network
2024-Dec, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3446839
PMID:39298305
|
研究论文 | 本文提出了一种新的双域并行融合重建网络(DPFNet),用于快速重建多线圈MRI图像,解决了现有方法在重建细节不足和训练内存占用高等方面的问题 | 提出了一种新的双域并行融合重建网络(DPFNet),包括线圈敏感度图估计模块、双域特征提取模块、双域动态误差校正模块和双域动态融合模块,并引入了新的双域一致性损失函数 | 未明确提及具体局限性 | 提高多线圈MRI图像的重建质量和速度 | 多线圈MRI图像的重建 | 医学影像处理 | 脑部疾病 | MRI | U-Net | MRI图像和K空间数据 | Calgary-Campinas-359脑部MRI数据集 | NA | NA | NA | NA |
| 13727 | 2025-04-25 |
c-Triadem: A constrained, explainable deep learning model to identify novel biomarkers in Alzheimer's disease
2024-Nov-20, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.11.19.24317595
PMID:39606415
|
研究论文 | 提出了一种名为c-Triadem的深度学习模型,用于识别阿尔茨海默病的潜在血液生物标志物,并预测轻度认知障碍和阿尔茨海默病 | 开发了一种新型的深度神经网络模型c-Triadem,结合基因型数据、基因表达数据和临床信息,以高准确率预测疾病状态,并通过SHAP分析识别关键基因和临床特征 | 研究依赖于ADNI数据库的数据,可能限制了模型的泛化能力 | 开发一种能够识别阿尔茨海默病血液生物标志物并预测疾病状态的深度学习模型 | 阿尔茨海默病患者、轻度认知障碍患者和认知正常人群 | 机器学习 | 阿尔茨海默病 | 基因型数据分析、基因表达数据分析、SHAP分析 | 深度神经网络 | 基因型数据、基因表达数据、临床数据 | 来自阿尔茨海默病神经影像学倡议(ADNI)的血液基因型数据、微阵列数据和临床特征 | NA | NA | NA | NA |
| 13728 | 2025-04-25 |
Neural network analysis as a novel skin outcome in a trial of belumosudil in patients with systemic sclerosis
2024-Oct-15, Research square
DOI:10.21203/rs.3.rs-4889334/v1
PMID:39483897
|
研究论文 | 本文探讨了在系统性硬化症(SSc)患者中使用神经网络分析作为皮肤结果的新方法,并与传统方法进行比较 | 首次将深度学习模型应用于SSc患者的皮肤活检,以量化病理特征,超越了传统的皮肤厚度测量 | 研究样本量较小(仅10名患者),且试验提前终止,可能影响结果的普遍性 | 评估belumosudil在SSc患者中的效果,并探索AI在量化SSc皮肤病理特征中的应用 | 患有弥漫性皮肤SSc的成年患者 | 数字病理学 | 系统性硬化症 | 深度学习 | 深度学习模型 | 图像(皮肤活检切片) | 10名患者(其中5名有配对活检) | NA | NA | NA | NA |
| 13729 | 2025-04-25 |
Bi-level Graph Learning Unveils Prognosis-Relevant Tumor Microenvironment Patterns in Breast Multiplexed Digital Pathology
2024-Oct-04, bioRxiv : the preprint server for biology
DOI:10.1101/2024.04.22.590118
PMID:38712207
|
研究论文 | 本研究提出了一种数据驱动且可解释的方法,用于识别与患者预后相关的肿瘤微环境细胞组织模式 | 引入了双层图模型(细胞图和群体图),通过软Weisfeiler-Lehman子树核捕捉患者间的相似性,从而识别具有独特预后的患者亚群和肿瘤微环境模式 | 方法虽然在乳腺癌患者中验证,但可能在其他癌症类型中的适用性需要进一步验证 | 开发一种可解释的深度学习方法,识别与预后相关的肿瘤微环境模式 | 乳腺癌患者的肿瘤微环境 | 数字病理学 | 乳腺癌 | 深度学习 | 双层图模型(细胞图和群体图) | 数字病理图像 | 乳腺癌患者队列(具体数量未提及)及两个独立验证队列 | NA | NA | NA | NA |
| 13730 | 2025-04-25 |
Digital pathology assessment of kidney glomerular filtration barrier ultrastructure in an animal model of podocytopathy
2024-Jul-15, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.14.599097
PMID:38948787
|
research paper | 开发了一种基于深度学习的数字病理计算方法,用于测量TEM图像中肾小球滤过屏障的超微结构 | 首次使用U-Net模型和图像处理算法自动测量GBM和PFP宽度,减少了人工操作的劳动强度和操作者间的变异性 | 自动和手动PFP宽度测量在ILK cKO标本中存在差异,表明方法在PFP测量上可能不够精确 | 研究肾小球滤过屏障超微结构的自动化测量方法,以促进足细胞病的研究和临床诊断 | Integrin-Linked Kinase (ILK) 足细胞特异性条件敲除小鼠和野生型小鼠的肾脏TEM图像 | digital pathology | podocytopathy | transmission electron microscopy (TEM) | U-Net | image | WT和ILK cKO同窝小鼠的肾脏TEM图像,4周龄 | NA | NA | NA | NA |
| 13731 | 2025-04-25 |
Analysis of RNA translation with a deep learning architecture provides new insight into translation control
2024-Jul-02, bioRxiv : the preprint server for biology
DOI:10.1101/2023.07.08.548206
PMID:39005319
|
研究论文 | 开发了一种深度神经网络模型,用于从RNA序列直接预测和分析翻译起始和终止位点 | 模型揭示了密码子使用在调控翻译终止中的新作用,并发现了数千个新的开放阅读框 | 模型主要基于人类转录本训练,在其他生物体中的预测准确性可能有限 | 理解基因翻译的调控机制 | RNA序列中的翻译起始和终止位点 | 自然语言处理 | NA | 深度神经网络 | 深度神经网络 | RNA序列 | 人类转录组数据 | NA | NA | NA | NA |
| 13732 | 2025-04-25 |
Analyzing heterogeneity in Alzheimer Disease using multimodal normative modeling on imaging-based ATN biomarkers
2024-Jul-01, ArXiv
PMID:39010871
|
research paper | 使用多模态规范建模分析阿尔茨海默病的异质性,基于成像ATN生物标志物 | 采用深度学习多模态规范框架分析个体水平的ATN成像生物标志物变异 | 研究仅基于横断面数据,未考虑纵向变化 | 探究阿尔茨海默病的异质性及其与认知功能和疾病进展的关系 | 阿尔茨海默病患者(淀粉样蛋白阳性和阴性对照) | digital pathology | geriatric disease | T1-weighted MRI, amyloid and tau PET | deep learning-based multimodal normative framework | imaging data | 发现队列(n = 665)和复制队列(n = 430) | NA | NA | NA | NA |
| 13733 | 2025-04-25 |
Artificial intelligence in colonoscopy: from detection to diagnosis
2024-07, The Korean journal of internal medicine
DOI:10.3904/kjim.2023.332
PMID:38695105
|
综述 | 本文综述了人工智能在结肠镜检查中从检测到诊断的最新进展 | 总结了不同深度学习模型在结肠镜检查不同任务中的适用性及性能表现 | 仅纳入2021年及以后发表的英文文献,可能存在发表偏倚 | 评估人工智能在结肠镜检查中的应用效果 | 27篇PubMed原始研究 | 数字病理学 | 胃肠道疾病 | 深度学习 | Efficientnet, YOLO, Unet | 医学影像 | 27项研究 | NA | NA | NA | NA |
| 13734 | 2025-04-25 |
Privacy-proof Live Surgery Streaming: Development and Validation of a Low-cost, Real-time Robotic Surgery Anonymization Algorithm
2024-Jul-01, Annals of surgery
IF:7.5Q1
DOI:10.1097/SLA.0000000000006245
PMID:38390732
|
研究论文 | 开发并验证了一种低成本、实时机器人手术匿名化算法,用于隐私保护的实时手术流媒体 | 首创了一种手术匿名化算法,能够可靠且准确地实时移除体外图像,并在多种机器人平台上进行验证 | NA | 开发一种可靠、准确且实时的机器人手术匿名化算法,用于手术视频数据的隐私保护 | 机器人手术视频数据 | 计算机视觉 | NA | 深度学习 | Robotic Anonymization Network | 视频 | 63个手术视频,包含6种手术和4种机器人系统,共496,828张图像 | NA | NA | NA | NA |
| 13735 | 2025-04-25 |
Analyzing heterogeneity in Alzheimer Disease using multimodal normative modeling on imaging-based ATN biomarkers
2024-Jun-30, bioRxiv : the preprint server for biology
DOI:10.1101/2023.08.15.553412
PMID:37662280
|
research paper | 本研究采用基于深度学习的多模态规范框架,分析阿尔茨海默病(AD)患者个体水平的ATN成像生物标志物变异 | 首次将多模态规范建模应用于ATN成像生物标志物,以分析AD的异质性 | 研究仅基于横断面数据,缺乏纵向追踪验证 | 探究阿尔茨海默病的异质性表现 | 阿尔茨海默病患者(淀粉样蛋白阳性个体)与对照组(淀粉样蛋白阴性个体) | digital pathology | geriatric disease | T1加权MRI、淀粉样蛋白PET、tau蛋白PET | 深度学习模型 | 医学影像数据 | 发现队列665人,验证队列430人 | NA | NA | NA | NA |
| 13736 | 2025-04-25 |
Enhanced Cell Tracking Using A GAN-based Super-Resolution Video-to-Video Time-Lapse Microscopy Generative Model
2024-Jun-14, bioRxiv : the preprint server for biology
DOI:10.1101/2024.06.11.598572
PMID:38915545
|
research paper | 该论文提出了一种基于GAN的超分辨率视频到视频延时显微镜生成模型,用于增强细胞追踪 | 提出了一种称为tGAN的GAN-based延时显微镜生成器,能够显著提高合成注释延时显微镜数据的质量和多样性,采用双分辨率架构合成低分辨率和高分辨率图像 | 需要进一步验证模型在更大规模和多样性数据集上的泛化能力 | 解决细胞追踪中由于缺乏大规模多样化注释数据集而导致的深度学习模型泛化能力不足的问题 | 细胞动态行为 | digital pathology | NA | time-lapse microscopy | GAN | video | NA | NA | NA | NA | NA |
| 13737 | 2025-04-25 |
MulTFBS: A Spatial-Temporal Network with Multichannels for Predicting Transcription Factor Binding Sites
2024-05-27, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.3c02088
PMID:38733561
|
research paper | 提出了一种名为MulTFBS的多通道深度学习框架,用于预测转录因子结合位点(TFBSs) | 整合了DNA序列的不同类型特征,包括独立的一热编码、词嵌入编码(可结合上下文信息并提取序列的全局特征)和双螺旋三维结构特征,通过空间-时间网络结合CNN和双向LSTM及注意力机制有效提取序列高层信息 | 未明确提及 | 揭示影响转录因子结合特异性的机制,理解基因调控 | 转录因子结合位点(TFBSs) | natural language processing | NA | 深度学习 | CNN, bidirectional LSTM, attention mechanism | DNA序列 | 66个不同转录因子的通用蛋白结合微阵列数据集 | NA | NA | NA | NA |
| 13738 | 2025-04-25 |
MolLoG: A Molecular Level Interpretability Model Bridging Local to Global for Predicting Drug Target Interactions
2024-05-27, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00171
PMID:38709146
|
research paper | 提出了一种名为MolLoG的深度学习网络结构,用于预测药物与靶标之间的相互作用,并提供分子层面的解释 | MolLoG通过局部特征编码器(LFE)和全局交互学习(GIL)模块,平衡了局部特征提取与全局交互表示,提供了对黑盒结果的生物学相关解释 | 未提及具体的数据集规模或实验环境限制 | 提高药物与靶标相互作用预测的准确性和可解释性 | 药物与蛋白质分子 | machine learning | NA | 深度学习(DL) | 图卷积网络(GCN)、多层感知机(MLP) | 分子结构数据 | 四个数据集 | NA | NA | NA | NA |
| 13739 | 2025-04-25 |
CNSMolGen: A Bidirectional Recurrent Neural Network-Based Generative Model for De Novo Central Nervous System Drug Design
2024-05-27, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c00504
PMID:38739718
|
研究论文 | 本文介绍了一种基于双向循环神经网络(Bi-RNN)的生成模型CNSMolGen,用于中枢神经系统(CNS)药物的从头设计 | 开发了首个专门针对CNS药物设计的Bi-RNN生成模型,能够生成90%以上全新且可合成的CNS药物分子结构 | 未提及模型在更大规模或更复杂CNS靶点上的泛化能力验证 | 加速中枢神经系统药物的发现与优化 | 中枢神经系统药物分子 | 机器学习 | 神经退行性疾病/精神疾病 | 深度学习生成模型 | Bi-RNN | 分子结构数据 | 未明确说明样本量(使用SERT靶点药物作为微调数据集) | NA | NA | NA | NA |
| 13740 | 2025-04-25 |
Predicting Antimicrobial Peptides Using ESMFold-Predicted Structures and ESM-2-Based Amino Acid Features with Graph Deep Learning
2024-05-27, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.3c02061
PMID:38739853
|
研究论文 | 提出了一种基于ESMFold预测结构和ESM-2氨基酸特征的图深度学习框架,用于预测抗菌肽 | 结合了最新的三级结构预测技术和进化信息编码方法,避免了多重序列对齐的内存和时间消耗 | 依赖于预测的肽结构,可能受到预测准确性的影响 | 开发一种无需对齐的模型,用于高效预测抗菌肽 | 抗菌肽(AMPs) | 机器学习 | 抗菌耐药性 | ESMFold结构预测,ESM-2进化模型,图注意力网络(GAT) | GAT | 氨基酸序列和预测的3D结构 | 67,058种肽 | NA | NA | NA | NA |