本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13741 | 2024-11-08 |
A multicenter study on deep learning for glioblastoma auto-segmentation with prior knowledge in multimodal imaging
2024-Oct, Cancer science
IF:4.5Q1
DOI:10.1111/cas.16304
PMID:39119927
|
研究论文 | 本文提出了一种基于深度学习的胶质母细胞瘤自动分割方法,利用多模态影像的先验知识,并在多中心数据集上进行了验证 | 提出了一种新的深度学习方法(PKMI-Net),利用多模态影像的先验知识进行胶质母细胞瘤的自动分割 | NA | 提高胶质母细胞瘤放射治疗中肿瘤分割的准确性和效率 | 胶质母细胞瘤(GBM)的肿瘤体积(GTV)和临床靶体积(CTV1和CTV2)的自动分割 | 计算机视觉 | 脑肿瘤 | 深度学习 | PKMI-Net | 影像 | 148名符合条件的患者,来自四个多中心数据集 |
13742 | 2024-11-08 |
Detectability of Hypoattenuating Liver Lesions with Deep Learning CT Reconstruction: A Phantom and Patient Study
2024-Oct, Radiology
IF:12.1Q1
DOI:10.1148/radiol.232749
PMID:39377679
|
研究论文 | 研究深度学习CT重建(DLIR)与自适应统计迭代重建-V(ASIR-V)在低对比度肝病变检测中的效果 | DLIR在中等和高强度重建中显示出比ASIR-V更高的病变与背景对比噪声比 | 研究未发现DLIR与ASIR-V在低对比度病变检测能力上的显著差异 | 评估DLIR与ASIR-V在CT扫描中低对比度肝病变检测能力的差异 | 肝病变和低对比度分辨率体模 | 计算机视觉 | 肝病 | 深度学习图像重建(DLIR) | NA | 图像 | 50名患者和86个肝病变 |
13743 | 2024-11-08 |
Evaluating the Performance and Bias of Natural Language Processing Tools in Labeling Chest Radiograph Reports
2024-Oct, Radiology
IF:12.1Q1
DOI:10.1148/radiol.232746
PMID:39436298
|
研究论文 | 评估四种自然语言处理工具在标注胸部X光报告中的性能和偏差 | 首次系统评估了四种自然语言处理工具在不同人口统计群体中的准确性和偏差 | 研究主要集中在胸部X光报告,未涵盖其他类型的放射学报告 | 评估自然语言处理工具在标注胸部X光报告中的准确性和人口统计偏差 | 四种自然语言处理工具在两个胸部X光数据集上的性能 | 自然语言处理 | NA | 自然语言处理 | 深度学习 | 文本 | 692名患者(MIMIC数据集)和3665名患者(IU数据集) |
13744 | 2024-11-08 |
Analyzing Wav2Vec 1.0 Embeddings for Cross-Database Parkinson's Disease Detection and Speech Features Extraction
2024-Aug-26, Sensors (Basel, Switzerland)
DOI:10.3390/s24175520
PMID:39275431
|
研究论文 | 研究使用未微调的wav2vec 1.0架构进行跨数据库的帕金森病检测和语音特征提取 | wav2vec 1.0在跨数据库分类和回归任务中表现出色,特别是在检测帕金森病和预测语音特征方面,显示出比传统特征提取方法更高的准确性 | 研究主要集中在跨数据库的分类和回归任务上,未涉及其他类型的语音数据或任务 | 分析wav2vec 1.0嵌入在跨数据库帕金森病检测和语音特征提取中的应用 | 帕金森病患者的语音数据 | 机器学习 | 神经退行性疾病 | wav2vec 1.0 | 机器学习模型 | 语音数据 | 三个多语言帕金森病数据集 |
13745 | 2024-11-08 |
[Research status and prospect of the application of artificial intelligence in the acupuncture and moxibustion field based on bibliometric]
2024-Aug-12, Zhongguo zhen jiu = Chinese acupuncture & moxibustion
|
综述 | 通过文献计量方法探讨人工智能在针灸领域应用的研究热点、发展趋势及存在的问题 | 分析了人工智能技术在针灸诊断治疗、疗效预测、教学及智能设备开发等方面的应用 | 人工智能在针灸领域的应用研究处于初步发展阶段,未来需加强团队间的交流与合作,进一步探索符合针灸诊疗特点的人工智能系统 | 探讨人工智能在针灸领域应用的研究热点、发展趋势及存在的问题 | 人工智能在针灸领域的应用 | NA | NA | 机器学习、神经网络、深度学习、数据挖掘 | NA | 文献 | 共纳入443篇中文文章和68篇英文文章 |
13746 | 2024-11-08 |
A systematic literature review on the significance of deep learning and machine learning in predicting Alzheimer's disease
2024-08, Artificial intelligence in medicine
IF:6.1Q1
DOI:10.1016/j.artmed.2024.102928
PMID:39029377
|
综述 | 本文系统回顾了深度学习和机器学习在阿尔茨海默病预测中的应用 | NA | NA | 调查不同阿尔茨海默病检测技术、数据集、输入模态、算法、库和性能评估指标,以确定哪种模型或策略可能提供更优越的性能 | 阿尔茨海默病的检测技术、数据集、输入模态、算法、库和性能评估指标 | 机器学习 | 阿尔茨海默病 | 磁共振成像 (MRI)、正电子发射断层扫描 (PET)、APOe4 基因型、扩散张量成像 (DTI) 和脑脊液 (CSF) 生物标志物 | 卷积神经网络 (CNN)、支持向量机 (SVM) | 图像 | 100 篇研究文章 |
13747 | 2024-11-08 |
Deep learning-based pathway-centric approach to characterize recurrent hepatocellular carcinoma after liver transplantation
2024-06-05, Human genomics
IF:3.8Q2
DOI:10.1186/s40246-024-00624-6
PMID:38840185
|
研究论文 | 研究利用深度学习方法分析肝移植后肝细胞癌复发的转录组数据,识别差异表达基因和相关通路 | 首次采用深度学习方法分析肝移植后肝细胞癌复发的基因表达数据,识别出与复发相关的关键基因和通路 | 研究样本量较小,仅包含7对患者的样本 | 研究肝移植后肝细胞癌复发的分子机制 | 肝移植后复发的肝细胞癌患者的转录组数据 | 机器学习 | 肝癌 | 深度学习 | 深度学习模型 | 转录组数据 | 7对肝移植后复发的肝细胞癌患者样本 |
13748 | 2024-11-08 |
Assessing brain involvement in Fabry disease with deep learning and the brain-age paradigm
2024-Apr, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.26599
PMID:38520360
|
研究论文 | 本文使用深度学习和脑龄范式评估法布里病患者的脑部是否比正常人更老,并验证脑预测年龄差异(brain-PAD)作为疾病严重程度生物标志物的可能性 | 首次使用深度学习和脑龄范式评估法布里病患者的脑部年龄,并验证brain-PAD作为疾病严重程度生物标志物的有效性 | 研究样本仅来自单一机构,且样本量相对较小 | 评估法布里病患者的脑部是否比正常人更老,并验证brain-PAD作为疾病严重程度生物标志物的有效性 | 法布里病患者和健康对照组的脑部MRI扫描数据 | 计算机视觉 | 罕见病 | MRI扫描 | DenseNet | 图像 | 52名法布里病患者和58名健康对照组 |
13749 | 2024-11-08 |
Deep learning-based predictive classification of functional subpopulations of hematopoietic stem cells and multipotent progenitors
2024-Mar-13, Stem cell research & therapy
IF:7.1Q1
DOI:10.1186/s13287-024-03682-8
PMID:38475857
|
研究论文 | 研究利用深度学习技术对造血干细胞和多能祖细胞的功能亚群进行预测分类 | 首次使用深度学习在稳态条件下区分造血干细胞和多能祖细胞,开发了基于深度学习的分类器 | NA | 探索利用深度学习技术区分小鼠造血干细胞和多能祖细胞的可行性 | 小鼠造血干细胞和多能祖细胞 | 机器学习 | NA | 深度学习 | LSM模型 | 图像 | 大量图像数据集 |
13750 | 2024-11-08 |
Extracting adverse drug events from clinical Notes: A systematic review of approaches used
2024-Mar, Journal of biomedical informatics
IF:4.0Q2
DOI:10.1016/j.jbi.2024.104603
PMID:38331081
|
综述 | 本文对从临床笔记中提取不良药物事件(ADE)的方法进行了系统性综述 | 本文综述了当前从临床笔记中提取ADE的各种方法,包括命名实体识别(NER)和关系提取(RE),并根据不同的提取方法进行了分类 | 本文主要集中在方法的综述上,未提供具体的实验数据或模型性能比较 | 综述当前从临床笔记中提取不良药物事件的方法,并展示这些方法的进展和挑战 | 不良药物事件(ADE)的提取方法 | 自然语言处理 | NA | 自然语言处理(NLP) | NA | 文本 | 从2015年到2023年,共筛选出82篇相关文献进行分析 |
13751 | 2024-11-08 |
Impact of log parsing on deep learning-based anomaly detection
2024, Empirical software engineering
IF:3.5Q1
DOI:10.1007/s10664-024-10533-w
PMID:39161930
|
研究论文 | 本文研究了日志解析对基于深度学习的异常检测准确性的影响 | 本文首次系统地研究了日志解析对异常检测准确性的影响,并发现区分性比解析准确性更重要 | 研究仅限于13种日志解析技术和7种异常检测技术,可能无法涵盖所有情况 | 探讨日志解析对基于深度学习的异常检测准确性的影响 | 日志解析技术和异常检测技术 | 机器学习 | NA | 深度学习 | NA | 日志数据 | 使用了三个公开的日志数据集 |
13752 | 2024-11-08 |
Dinucleotide composition representation -based deep learning to predict scoliosis-associated Fibrillin-1 genotypes
2024, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2024.1492226
PMID:39502335
|
研究论文 | 本文提出了一种基于二核苷酸组成表示(DCR)的深度学习方法,用于预测与脊柱侧弯相关的Fibrillin-1基因型 | 本文创新性地使用二核苷酸组成表示(DCR)和卷积神经网络(CNN)来预测脊柱侧弯相关的高风险基因型 | NA | 研究目的是通过深度学习方法预测青少年特发性脊柱侧弯(AIS)相关的基因型 | 研究对象是ClinVar数据库中的AIS相关变异记录 | 机器学习 | 脊柱侧弯 | 深度学习 | 卷积神经网络(CNN) | 基因数据 | 58,000条脊柱侧弯相关记录 |
13753 | 2024-11-08 |
Multi-stage semi-supervised learning enhances white matter hyperintensity segmentation
2024, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2024.1487877
PMID:39502452
|
研究论文 | 本文提出了一种多阶段半监督学习方法,用于增强白质高信号区域的分割 | 本文创新性地采用了多阶段半监督学习(M3SL)方法,结合未标注数据和少量高质量标注数据,显著提升了白质高信号区域分割模型的性能 | 本文未详细讨论M3SL方法在不同数据集上的适用性和潜在的局限性 | 研究目的是开发一种能够有效利用未标注数据和少量高质量标注数据的白质高信号区域分割方法 | 研究对象是白质高信号区域(WMHs)的分割 | 计算机视觉 | NA | 半监督学习 | U-Net | 图像 | 使用了来自三个扫描仪供应商的超过五个扫描仪的数据,包括认知正常(CN)成人和患者(轻度认知障碍和阿尔茨海默病)的样本 |
13754 | 2024-11-08 |
Progress and clinical translation in hepatocellular carcinoma of deep learning in hepatic vascular segmentation
2024 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076241293498
PMID:39502486
|
综述 | 本文综述了深度学习在肝血管分割中的进展及其在肝细胞癌(HCC)整体管理中的临床意义 | 深度学习方法,包括卷积神经网络等,显著提高了肝血管分割的准确性和速度 | 本文讨论了深度学习技术在增强HCC综合诊断和治疗中的挑战和未来前景 | 探讨深度学习在肝血管分割中的应用及其对HCC诊断和治疗的支持 | 肝血管分割及其在肝细胞癌诊断和治疗中的应用 | 计算机视觉 | 肝癌 | 深度学习 | 卷积神经网络 | 图像 | 30项研究 |
13755 | 2024-11-08 |
Graph neural networks are promising for phenotypic virtual screening on cancer cell lines
2024, Biology methods & protocols
IF:2.5Q3
DOI:10.1093/biomethods/bpae065
PMID:39502795
|
研究论文 | 本文研究了图神经网络在癌症细胞系表型虚拟筛选中的应用 | 本文提出图神经网络(D-MPNN)在表型虚拟筛选中表现优于其他机器学习算法 | 研究受限于测试分子数量较少以及未采用合适的性能指标和不同分子分割方法 | 评估不同机器学习算法在表型虚拟筛选中的性能 | 60个包含约30,000-50,000个分子的数据集,用于测试其在NCI-60癌症细胞系中的生长抑制活性 | 机器学习 | 癌症 | 图神经网络 | D-MPNN | 分子数据 | 约14,440次训练运行 |
13756 | 2024-11-08 |
LT-DeepLab: an improved DeepLabV3+ cross-scale segmentation algorithm for Zanthoxylum bungeanum Maxim leaf-trunk diseases in real-world environments
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1423238
PMID:39502917
|
研究论文 | 本文提出了一种改进的DeepLabV3+算法LT-DeepLab,用于复杂环境中花椒叶和茎疾病的跨尺度语义分割 | 引入了创新的Fission Depth Separable with CRCC Atrous Spatial Pyramid Pooling模块,减少了Atrous Spatial Pyramid Pooling模块的结构参数并提高了跨尺度提取能力,结合Criss-Cross Attention和Convolutional Block Attention Module增强了通道特征提取,并使用可变形卷积和全卷积网络辅助头优化网络 | NA | 提高花椒叶和茎疾病在复杂环境中的分割准确性和效率 | 花椒叶和茎的疾病,包括叶斑、锈病、霜冻损伤和病叶茎 | 计算机视觉 | NA | 深度学习 | DeepLabV3+ | 图像 | NA |
13757 | 2024-11-08 |
Comparative Phylogenetic Analysis and Protein Prediction Reveal the Taxonomy and Diverse Distribution of Virulence Factors in Foodborne Clostridium Strains
2024, Evolutionary bioinformatics online
DOI:10.1177/11769343241294153
PMID:39502941
|
研究论文 | 通过生物信息学预测方法研究了两种食源性梭菌基因组与毒力蛋白的分子进化关系,并比较分析了毒力蛋白的基因编码主要特征和结构特性 | 揭示了食源性梭菌毒力因子的系统发育特征、多样性和分布 | NA | 研究食源性梭菌基因组与毒力蛋白的分子进化关系 | 食源性梭菌(Clostridium botulinum和Clostridium perfringens)的毒力蛋白 | 生物信息学 | NA | 多重序列分析、同源建模、深度学习算法 | NA | 基因组数据 | 两种食源性梭菌菌株 |
13758 | 2024-11-08 |
Cochlear Implant Fold Detection in Intra-operative CT Using Weakly Supervised Multi-task Deep Learning
2023-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-031-43996-4_24
PMID:38515783
|
研究论文 | 本文提出了一种使用弱监督多任务深度学习在术中CT图像中检测耳蜗植入电极折叠的方法 | 本文创新性地使用合成数据集训练了一个多任务3D-UNet模型,用于检测耳蜗植入电极的折叠情况 | 本文仅在合成数据集和少量真实数据上进行了验证,未来需要在更大规模的真实数据上进行进一步验证 | 开发一种自动检测耳蜗植入电极折叠的方法,以减少手术风险和提高听力恢复效果 | 耳蜗植入电极的折叠情况 | 计算机视觉 | NA | 弱监督学习 | 3D-UNet | CT图像 | 训练数据包括合成数据集,测试数据包括7个折叠电极和200个非折叠电极的真实术后CT图像 |
13759 | 2024-11-08 |
Can point cloud networks learn statistical shape models of anatomies?
2023-Oct, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-031-43907-0_47
PMID:39498296
|
研究论文 | 本文探讨了点云网络在统计形状建模(SSM)中的应用 | 首次探索了点云深度学习在SSM中的应用,展示了现有点云编码器-解码器网络在捕捉形状统计表示方面的潜力 | 讨论了现有技术在SSM应用中的局限性,并提出了未来改进的方向 | 研究点云网络在统计形状建模中的潜力 | 点云深度学习在SSM中的应用 | 计算机视觉 | NA | 点云深度学习 | 点云编码器-解码器网络 | 点云 | NA |
13760 | 2024-11-08 |
Improving Sensitivity of Arterial Spin Labeling Perfusion MRI in Alzheimer's Disease Using Transfer Learning of Deep Learning-Based ASL Denoising
2022-06, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.27984
PMID:34741576
|
研究论文 | 本文研究了通过深度学习转移学习方法提高阿尔茨海默病患者动脉自旋标记灌注MRI的灵敏度 | 提出了一种基于深度学习的动脉自旋标记MRI去噪方法,并通过转移学习将其应用于不同序列和不同人群的数据 | 研究仅限于特定的MRI序列和人群,可能不适用于所有情况 | 评估一种基于深度学习的动脉自旋标记MRI去噪方法的转移性 | 阿尔茨海默病患者和正常对照组的动脉自旋标记灌注MRI数据 | 计算机视觉 | 阿尔茨海默病 | 深度学习 | 深度学习模型 | 图像 | 428名受试者(189名女性),分为三个数据集 |