深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 40284 篇文献,本页显示第 1361 - 1380 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1361 2026-02-03
End-to-End Platform for Electrocardiogram Analysis and Model Fine-Tuning: Development and Validation Study
2026-Jan-30, Journal of medical Internet research IF:5.8Q1
研究论文 本研究开发并验证了一个名为ExChanGeAI的端到端开源网络平台,旨在简化心电图数据的分析流程和模型微调 提出了一个集成化、用户友好的开源平台,解决了心电图数据格式异构、预训练模型访问受限以及技术流程复杂等主要瓶颈,支持本地计算以确保数据隐私 未明确说明平台在处理极大规模数据集或实时临床部署时的具体性能限制 降低心电图深度学习分析的技术门槛,为临床研究人员和从业者提供易于使用的先进分析工具 心电图数据及其相关的深度学习分析任务 机器学习 心血管疾病 NA 深度学习 心电图信号 使用了3个外部异构验证数据集,包括一个来自常规护理的新整理测试集 NA 多种最先进的心电图深度学习架构 模型泛化能力、资源效率 支持个人计算机部署,并可扩展至高性能计算基础设施,所有计算在本地执行
1362 2026-02-03
A probabilistic deep learning approach for choroid plexus segmentation in autism spectrum disorder
2026-Jan-30, NPP - digital psychiatry and neuroscience
研究论文 本文提出了一种用于自闭症谱系障碍中脉络丛分割的概率深度学习工具ASCHOPLEX,并评估了其在不同年龄组中的泛化能力 开发了一种能够通过患者特定数据进行微调的深度学习工具,并引入了概率方法以量化分割不确定性,从而评估模型置信度 在儿童数据上的准确性下降,表明在没有额外微调的情况下,对不同年龄组的泛化能力有限 开发并评估一种能够准确分割自闭症谱系障碍患者脉络丛的自动化工具,以支持大规模人群分析 自闭症谱系障碍患者和对照参与者的脉络丛 医学影像分析 自闭症谱系障碍 磁共振成像 深度学习模型 图像 本地数据集中的ASD和CON参与者,以及ABIDE数据集中的儿童和成人数据 NA NA 准确性 NA
1363 2026-02-03
Trustworthy prediction of enzyme commission numbers using a hierarchical interpretable transformer
2026-Jan-30, Nature communications IF:14.7Q1
研究论文 本文提出了一种名为HIT-EC的分层可解释Transformer模型,用于准确且可信地预测酶委员会(EC)编号 采用四层Transformer架构以匹配EC编号的层次结构,结合局部和全局依赖关系进行多标签分类,并提出处理不完整EC编号标注的学习策略,作为证据深度学习模型提供生物学意义的解释方案 未明确提及模型在计算资源需求或特定EC类别泛化能力方面的具体限制 开发一个可信赖的EC编号预测模型,以改善酶功能理解和生物过程分析 酶蛋白序列及其对应的EC编号 自然语言处理 NA 深度学习 Transformer 蛋白质序列(文本数据) 未明确指定具体样本数量,但提及使用大型数据集进行交叉验证和外部数据验证 未明确指定,可能为PyTorch或TensorFlow 分层Transformer(HIT-EC) 未明确列出具体指标,但提及预测性能的统计显著提升 未明确指定
1364 2026-02-03
Performance of Artificial Intelligence Tools in Axial Spondyloarthritis Imaging Assessment: a Systematic Literature Review and Meta-analysis
2026-Jan-30, Joint bone spine IF:3.8Q1
系统综述与荟萃分析 本文通过系统文献综述和荟萃分析,总结了人工智能技术在轴性脊柱关节炎影像评估中的性能表现 首次对AI在轴性脊柱关节炎多种影像模态(MRI、CT、CR)中相对于人类读者的性能进行了全面的系统综述和荟萃分析 研究存在异质性,且AI诊断仍需人类专家以确保临床安全性和准确性 评估人工智能技术在轴性脊柱关节炎影像解读中的性能,并与人类读者进行比较 轴性脊柱关节炎的影像数据,包括磁共振成像、计算机断层扫描和常规X线摄影 医学影像分析 轴性脊柱关节炎 磁共振成像、计算机断层扫描、常规X线摄影 深度学习 图像 33项研究(涉及1033篇参考文献,46篇全文审查) NA NA 灵敏度、特异度、准确度、受试者工作特征曲线下面积 NA
1365 2026-02-03
Preoperative Prediction of Prolonged Operative Time in Laparoscopic Ovarian Cystectomy Using Convolutional Neural Network-Extracted Ultrasound Image Features
2026-Jan-30, Journal of minimally invasive gynecology IF:3.5Q1
研究论文 本研究旨在通过结合临床变量和CNN提取的超声图像特征,预测腹腔镜卵巢囊肿切除术中手术时间延长的风险 首次将CNN提取的超声图像特征与传统临床变量结合,用于预测腹腔镜卵巢囊肿切除术的手术时间延长,提高了预测模型的AUC值 研究为单中心回顾性队列研究,样本量有限(247例患者),且CNN特征加入后AUC提升未达到统计学显著性,需要外部验证 预测腹腔镜卵巢囊肿切除术中手术时间延长,以支持术前风险分层和手术资源规划 接受腹腔镜卵巢囊肿切除术的良性卵巢肿瘤患者 计算机视觉 卵巢囊肿 超声成像 CNN 图像 247例患者 NA NA AUC NA
1366 2026-02-03
Deep neural network-based biostatistical analysis for disease marker screening
2026-Jan-29, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于深度神经网络的新型生物标志物筛选框架,并与传统统计方法进行了比较 设计了一个可扩展的综合模型,用于多组学数据整合并增强模型解释性,结合了注意力机制与SHAP值分析 未明确说明,但可能包括对特定数据集(乳腺癌)的依赖以及模型在其他疾病上的泛化能力有待验证 开发一种更准确、可解释的生物标志物筛选方法,以克服传统统计方法在处理高维小样本数据时的局限性 乳腺癌生物标志物 生物统计学 乳腺癌 单细胞测序 深度神经网络 多组学数据 NA NA NA 灵敏度, 准确率, AUC NA
1367 2026-02-03
MRI-based deep learning model predicts recurrent nasopharyngeal carcinoma in post-radiation nasopharyngeal necrosis
2026-Jan-29, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society IF:5.4Q1
研究论文 本研究开发了一种基于深度学习的MRI模型,用于预测放疗后鼻咽坏死中是否合并复发性鼻咽癌 首次利用深度学习模型结合常规MRI,在放疗后鼻咽坏死患者中识别复发性鼻咽癌 NA 开发基于深度学习的预测模型,以区分癌症浸润性放疗后鼻咽坏死与无癌放疗后鼻咽坏死 437名放疗后鼻咽坏死患者的MRI影像 医学影像分析 鼻咽癌 MRI 深度学习 图像 437名患者 NA Video Swin Transformer, Multilayer Perceptron AUC, 准确率, 敏感性, 特异性 NA
1368 2026-02-03
DeepHSI: A transferable and expandable hyperspectral framework for industrial plant origin identification: A case study of Pogostemon cablin (Blanco) Benth
2026-Jan-28, Talanta IF:5.6Q1
研究论文 本研究提出了一种基于高光谱成像和深度学习的快速通用方法DeepHSI,用于识别广藿香的主要产地,并通过代谢组学和转录组学分析验证了其可行性 提出了一种可迁移和可扩展的高光谱深度学习框架,通过多批次数据训练和迁移学习验证了模型的通用性,并设计了简化的多产地识别模型融合机制 研究仅针对广藿香的三个主要产地进行了案例验证,未涉及更多产地或物种 开发一种快速、无损的植物产地识别方法,用于质量控制和防伪验证 广藿香(Pogostemon cablin (Blanco) Benth) 计算机视觉 NA 高光谱成像(HSI)、代谢组学分析、转录组学分析 深度学习模型 高光谱图像 在三种实验条件(批次)下收集的高光谱数据 NA DeepHSI NA NA
1369 2026-02-03
Trace-level detection of free polycyclic aromatic hydrocarbons based on magnetic driving and deep learning-assisted recognition
2026-Jan-27, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究开发了一种结合磁驱动富集、环糊精特异性分子捕获和深度学习光谱分析的表面增强拉曼光谱策略,用于水中痕量多环芳烃的快速检测 提出了一种集成磁驱动富集、环糊精特异性捕获和深度学习光谱分析的SERS策略,并构建了Sparrow Search Algorithm优化的CNN-LSTM-Attention模型,实现了对结构相似PAHs的高精度分类和极低检测限 未明确提及方法在更复杂基质或实际环境样品中的广泛验证情况 开发一种快速、智能、可现场部署的SERS平台,用于复杂环境水样中多环芳烃的准确监测 水中的痕量多环芳烃 机器学习 NA 表面增强拉曼光谱,电磁场模拟,密度泛函理论计算 CNN, LSTM, Attention机制 光谱数据 NA NA CNN-LSTM-Attention 分类准确率,检测限 NA
1370 2026-02-03
[Research progress of automated ergonomic assessment methods based on RULA and REBA]
2026-Jan-20, Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases
综述 本文综述了基于RULA和REBA的自动化人机工效学接触风险评估技术的研究进展 系统性地总结了当前自动化评估方法在数据采集、处理、应用场景和准确性验证方面的现状与挑战,并展望了未来研究方向 当前研究主要受限于数据采集与传输的约束以及系统可靠性,多采用半自动化方法在模拟场景中进行 推动自动化人机工效学评估技术的发展与应用 基于RULA和REBA的自动化评估方法 计算机视觉, 机器学习 NA 惯性测量单元(IMU), 常规/深度相机, 红外运动捕捉系统 深度学习算法 运动数据, 图像数据 NA NA NA Cohen's kappa (κ), 比例一致性指数(Po) NA
1371 2026-02-03
Deep visual detection system for oral squamous cell carcinoma
2026-Jan-19, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种基于深度学习的视觉检测系统(DVDS),用于自动化检测口腔鳞状细胞癌(OSCC)的组织病理学图像 开发了一个基于EfficientNetB3的深度视觉检测系统,用于OSCC的自动化检测,并在两个公开数据集上验证了其优于DenseNet121和ResNet50的性能 研究使用了公开数据集,可能无法完全代表所有临床场景;模型性能可能受到数据集类别不平衡和图像质量的影响 开发一个自动化、快速且客观的深度学习系统,以辅助口腔鳞状细胞癌的早期诊断和临床决策 口腔鳞状细胞癌(OSCC)的组织病理学图像 数字病理学 口腔鳞状细胞癌 组织病理学图像分析 CNN 图像 两个公开数据集:Kaggle Oral Cancer Detection数据集(5192张图像,标记为正常或OSCC)和NDB-UFES数据集(3763张图像,分为OSCC、伴有异型增生的白斑和无异型增生的白斑) TensorFlow, Keras EfficientNetB3, DenseNet121, ResNet50 准确率, 精确率, 召回率, F1分数, 特异性, 灵敏度 NA
1372 2026-02-03
Deep Learning-Derived Right Ventricular Ejection Fraction Predicts Mortality in Patients Undergoing Transcatheter Tricuspid Valve Intervention
2026-Jan-19, JACC. Advances
研究论文 本研究利用深度学习模型从二维心尖四腔心切面超声心动图视频中估计右心室射血分数,评估经导管三尖瓣介入治疗患者的右心室功能轨迹,并预测一年全因死亡率 首次应用深度学习模型在经导管三尖瓣介入治疗背景下,从常规超声心动图视频中自动、无偏地评估右心室射血分数,并识别出术后右心室射血分数低于38%的高危患者群体 这是一项单中心、探索性研究,结果需要外部验证,且深度学习模型基于先前已发表和验证的模型,未在本研究中重新训练或优化 评估经导管三尖瓣介入治疗对右心室功能的影响,并利用深度学习衍生的右心室射血分数预测患者死亡率 接受经导管三尖瓣介入治疗的严重三尖瓣反流患者 数字病理学 心血管疾病 超声心动图 深度学习模型 视频 373名患者 NA NA 风险比, P值 NA
1373 2026-02-03
A Public Image Dataset for Surface Defect Detection of Water-Based Coated Wood Products
2026-Jan-14, Scientific data IF:5.8Q1
研究论文 本文发布了一个用于水性涂装木制品表面缺陷检测的公共图像数据集 开发并公开了一个专门针对水性涂装木制品表面缺陷的高分辨率图像数据集,包含四种缺陷类型,数据采集自真实工业生产线 NA 为深度学习模型在真实工业装配线上的部署提供关键数据支持,促进自动化机器学习解决方案的开发 水性涂装木制品的表面缺陷,包括划痕、裂纹、气泡和孔洞 计算机视觉 NA 工业相机图像采集 NA 图像 13400张高分辨率图像,包含3645个气泡缺陷、3498个划痕缺陷、3256个裂纹缺陷和3001个孔洞缺陷 NA NA NA NA
1374 2026-01-15
Lightweight deep learning model with spatial attention for accurate and efficient breast cancer prediction
2026-Jan-13, Scientific reports IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
1375 2026-02-03
A novel vision transformer model produces clock drawing test scores as accurate as expert human coders
2026-Jan-13, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种基于深度学习的智能时钟评分系统,用于自动编码时钟绘图测试图像,以辅助阿尔茨海默病及相关痴呆症的筛查 引入了结构化排序的编码系统,将时钟绘图评分视为有序分类问题,而非传统的无序分类,并首次将Vision Transformer模型应用于该任务,实现了与专家人工编码相当的准确性 研究依赖于公开数据集,可能未涵盖所有临床变异情况;模型性能在特定评分区间可能存在偏差 开发自动化的时钟绘图测试评分系统,以替代人工编码,减少大规模研究中的偏见和成本 时钟绘图测试图像 计算机视觉 阿尔茨海默病及相关痴呆症 深度学习神经网络 CNN, Vision Transformer 图像 2011-2019年国家健康与老龄化趋势研究(NHATS)中的大规模公开时钟绘图图像库 NA ResNet101, EfficientNet, Vision Transformer 加权Kappa系数 NA
1376 2026-01-12
Hybrid feature selection with novel deep learning model for COVID-19 risk prediction
2026-Jan-10, Scientific reports IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
1377 2026-02-03
sCellST predicts single-cell gene expression from H& E images
2026-Jan-09, Nature communications IF:14.7Q1
研究论文 本文提出了一种深度学习模型sCellST,用于从H&E染色图像预测单细胞基因表达 引入了一种能够从形态学直接预测单细胞基因表达的深度学习方法,相比现有基于图像块的方法,能捕捉更精细的形态变异 NA 从组织学图像预测基因表达,以研究组织空间结构和细胞多样性 H&E染色图像和单细胞基因表达数据 数字病理学 癌症 H&E染色,空间基因表达谱分析 深度学习 图像,基因表达数据 NA NA NA NA NA
1378 2026-02-03
Enhanced colorectal gland segmentation through multi-scale attention and contextual feature fusion
2026-Jan-07, Scientific reports IF:3.8Q1
研究论文 提出一种名为MAC-Net的深度学习模型,用于增强结直肠腺体分割,通过多尺度注意力和上下文特征融合提高分割精度 集成多尺度特征融合与注意力引导的上下文解码,通过通道注意力保留精细结构信息,增加编码器-解码器侧连接以增强判别特征学习,并在瓶颈处使用多尺度空间池化捕获全局上下文信息 未明确说明模型在更大规模或更多样化数据集上的泛化能力,也未详细讨论计算效率或实时应用的可能性 提高结直肠癌组织学图像中腺体分割的准确性和鲁棒性,以支持可靠的癌症分级、预后评估和治疗规划 结直肠癌组织学图像中的腺体结构 数字病理学 结直肠癌 组织学图像分析 深度学习模型 图像 训练数据:EBHI-Seg数据集(2228张图像);交叉验证数据:GIaS数据集(165张图像) 未明确指定,可能为PyTorch或TensorFlow MAC-Net(自定义架构,基于编码器-解码器结构,集成注意力机制和多尺度特征融合) Dice系数, IoU, 精确率, 召回率 未明确指定
1379 2026-02-03
An intelligent hybrid deep learning-machine learning model for monthly groundwater level prediction
2026-Jan-07, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种结合粒子群优化、浣熊优化、门控循环单元和自适应神经模糊推理系统的混合人工智能模型,用于预测伊朗阿尔达比勒平原的月地下水水位 提出了一种名为PCGA的新型混合模型,首次将PSO-COO优化算法与GRU和ANFIS结合,用于优化参数并提取数据中的隐藏模式,从而提高了地下水水位预测的精度 NA 开发一种高精度的混合人工智能模型,用于预测月地下水水位,以支持环境保护 伊朗阿尔达比勒平原的月地下水水位数据 机器学习 NA NA GRU, ANFIS 时间序列数据 NA NA GRU, ANFIS 平均绝对误差, 纳什-萨特克利夫效率 NA
1380 2026-02-03
Personalized gene expression prediction in the era of deep learning: a review
2026-Jan-07, Briefings in bioinformatics IF:6.8Q1
综述 本文回顾了深度学习时代下个性化基因表达预测的研究进展,重点讨论了现有模型的局限性及改进方法 系统比较了深度学习模型与传统线性方法在跨个体基因表达预测中的性能,并探讨了微调策略和基因组语言模型等新兴方向 深度学习模型在跨个体基因表达预测中仍面临显著挑战,难以稳定超越传统线性模型,且对个体特异性遗传变异的捕捉能力有限 提升从基因组序列预测个性化基因表达的准确性与鲁棒性 基因组序列与基因表达数据 计算基因组学 NA NA 深度学习模型 基因组序列数据、表观基因组数据 NA NA 基因组语言模型 NA NA
回到顶部