本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13801 | 2024-10-18 |
High-Speed On-Site Deep Learning-Based FFR-CT Algorithm: Evaluation Using Invasive Angiography as the Reference Standard
2023-10, AJR. American journal of roentgenology
DOI:10.2214/AJR.23.29156
PMID:37132550
|
研究论文 | 本研究评估了一种基于深度学习的高速现场FFR-CT算法在诊断冠状动脉狭窄中的表现 | 开发了一种基于深度学习的高速现场FFR-CT算法,显著缩短了分析时间,并提高了诊断准确性 | 研究为回顾性,样本量相对较小,且仅限于特定时间段内的患者 | 评估基于深度学习的FFR-CT算法在诊断冠状动脉狭窄中的诊断性能 | 冠状动脉狭窄的诊断和评估 | 计算机视觉 | 心血管疾病 | 深度学习 | 3D计算流体动力学模型 | 图像 | 59名患者(46名男性,13名女性;平均年龄66.5 ± 10.2岁) |
13802 | 2024-10-18 |
Editorial Comment: On-Site Deep Learning-Based FFR-CT-A Novel Method to Evaluate Functionally Significant Stenosis
2023-Oct, AJR. American journal of roentgenology
DOI:10.2214/AJR.23.29561
PMID:37132555
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13803 | 2024-10-18 |
Development and External Validation of an Artificial Intelligence Model for Identifying Radiology Reports Containing Recommendations for Additional Imaging
2023-09, AJR. American journal of roentgenology
DOI:10.2214/AJR.23.29120
PMID:37073901
|
研究论文 | 开发并验证了一种基于BERT的人工智能模型,用于识别放射学报告中包含额外影像建议的部分 | 使用BERT模型在识别放射学报告中额外影像建议方面表现优于传统的机器学习模型 | 研究仅限于特定时间段和特定医疗机构的放射学报告 | 开发和验证一种人工智能模型,用于识别放射学报告中包含额外影像建议的部分 | 放射学报告中的额外影像建议 | 机器学习 | NA | BERT | BERT | 文本 | 6300份放射学报告,涉及7419名患者 |
13804 | 2024-10-18 |
Single-Atom Level Determination of 3-Dimensional Surface/Interface Atomic Structures via Deep Learning-Assisted Atomic Electron Tomography
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
IF:2.9Q1
DOI:10.1093/micmic/ozad067.712
PMID:37613584
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13805 | 2024-10-18 |
Improving Porosity Analysis in Additive Manufacturing through 3D Resolution Recovery Using Deep Learning-Based Reconstruction
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
IF:2.9Q1
DOI:10.1093/micmic/ozad067.728
PMID:37613626
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13806 | 2024-10-18 |
Performance of Deep Learning-based Image Denoising in Image Reconstruction for Various Acquisition Conditions: a Simulated Phantom Study
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
IF:2.9Q1
DOI:10.1093/micmic/ozad067.725
PMID:37613776
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13807 | 2024-10-18 |
Deep Learning for Automated Quantification of Irradiation Defects in TEM Data: Relating Pixel-level Errors to Defect Properties
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
IF:2.9Q1
DOI:10.1093/micmic/ozad067.802
PMID:37613789
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13808 | 2024-10-18 |
Synthetic Data for Deep Learning: Segmentation of PCB X-Ray Images
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
IF:2.9Q1
DOI:10.1093/micmic/ozad067.979
PMID:37613931
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13809 | 2024-10-18 |
Deep Learning Design of Graphene-Reinforced Polyurethane Foams from SEM Microstructure Images and Style-based Generative Adversarial Networks
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
IF:2.9Q1
DOI:10.1093/micmic/ozad067.976
PMID:37613997
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13810 | 2024-10-18 |
Thyroid Nodules on Ultrasound in Children and Young Adults: Comparison of Diagnostic Performance of Radiologists' Impressions, ACR TI-RADS, and a Deep Learning Algorithm
2023-03, AJR. American journal of roentgenology
DOI:10.2214/AJR.22.28231
PMID:36259591
|
研究论文 | 比较放射科医生的总体印象、ACR TI-RADS和深度学习算法在儿童和年轻成人甲状腺结节超声诊断中的表现 | 本文创新点在于比较了放射科医生的总体印象、ACR TI-RADS和深度学习算法在甲状腺结节诊断中的敏感性和特异性,发现ACR TI-RADS和深度学习算法在敏感性上优于放射科医生的总体印象 | 本文的局限性在于样本量较小,且仅限于儿童和年轻成人,研究结果可能不适用于所有年龄段 | 比较不同诊断方法在儿童和年轻成人甲状腺结节超声诊断中的表现 | 儿童和年轻成人的甲状腺结节 | 计算机视觉 | 甲状腺疾病 | 深度学习算法 | 深度学习 | 图像 | 139名患者(中位年龄17.5岁;119名女性患者,20名男性患者) |
13811 | 2024-10-18 |
Abdominopelvic CT Image Quality: Evaluation of Thin (0.5-mm) Slices Using Deep Learning Reconstruction
2023-03, AJR. American journal of roentgenology
DOI:10.2214/AJR.22.28319
PMID:36259592
|
研究论文 | 本研究评估了使用深度学习重建(DLR)的0.5毫米薄层腹部和盆腔CT图像质量,并与0.5毫米和3.0毫米的混合迭代重建(HIR)图像进行了比较 | 本研究首次使用深度学习重建技术生成低噪声的薄层CT图像,并展示了其在图像质量和噪声方面的优势 | 本研究为回顾性研究,样本量较小,且未进行进一步的诊断性能研究 | 比较深度学习重建的薄层CT图像与传统混合迭代重建图像的质量 | 腹部和盆腔CT图像 | 计算机视觉 | NA | 深度学习重建(DLR) | NA | 图像 | 50名患者(31名男性和19名女性;中位年龄64岁) |
13812 | 2024-10-18 |
Editorial Comment: Deep Learning Image Reconstruction-Do Better Images Make a Better Radiologist?
2023-Mar, AJR. American journal of roentgenology
DOI:10.2214/AJR.22.28658
PMID:36287626
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13813 | 2024-10-18 |
Utility of Normalized Body Composition Areas, Derived From Outpatient Abdominal CT Using a Fully Automated Deep Learning Method, for Predicting Subsequent Cardiovascular Events
2023-Feb, AJR. American journal of roentgenology
DOI:10.2214/AJR.22.27977
PMID:36043607
|
研究论文 | 本研究探讨了使用全自动深度学习方法从门诊腹部CT中提取的归一化身体成分区域对后续心血管事件的预测能力 | 本研究首次使用全自动深度学习算法从常规CT扫描中提取身体成分测量值,并独立于传统体重指标预测心血管风险 | 本研究为回顾性研究,样本主要为黑人和白人患者,可能存在选择偏倚 | 确定通过全自动深度学习算法从常规CT扫描中获得的身体成分测量值是否能独立于体重、BMI和其他心血管风险因素预测后续心血管事件 | 9752名门诊患者,其中5519名女性和4233名男性,平均年龄53.2岁,890名患者自报为黑人,8862名自报为白人 | 计算机视觉 | 心血管疾病 | 深度学习 | NA | 图像 | 9752名门诊患者 |
13814 | 2024-10-18 |
Detectability of Small Low-Attenuation Lesions With Deep Learning CT Image Reconstruction: A 24-Reader Phantom Study
2023-Feb, AJR. American journal of roentgenology
DOI:10.2214/AJR.22.28407
PMID:36129222
|
研究论文 | 本研究评估了深度学习图像重建(DLIR)算法在低对比度检测性能和辐射节省潜力方面与滤波反投影(FBP)和迭代重建(IR)的比较 | DLIR算法在减少辐射剂量的情况下,仍能保持低对比度病变的检测性能,这是传统IR技术的一个主要缺点 | 研究仅在模拟人体的多阅读器非劣效性设计和任务型观察者模型中进行,未在真实临床环境中验证 | 评估DLIR算法在低对比度检测性能和辐射节省潜力方面的表现 | 低对比度检测性能和辐射节省潜力 | 计算机视觉 | NA | 深度学习图像重建(DLIR) | NA | 图像 | 24名不同经验水平的阅读者评估图像 |
13815 | 2024-10-18 |
Editorial Comment: More Evidence Supporting Deep Learning Reconstructions in Abdominal CT-What Should We Do?
2023-Feb, AJR. American journal of roentgenology
DOI:10.2214/AJR.22.28554
PMID:36169549
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
13816 | 2024-10-18 |
Artificial Intelligence (AI) for Fracture Diagnosis: An Overview of Current Products and Considerations for Clinical Adoption, From the AJR Special Series on AI Applications
2022-12, AJR. American journal of roentgenology
DOI:10.2214/AJR.22.27873
PMID:35731103
|
综述 | 本文综述了人工智能(AI)和深度学习算法在骨折诊断中的应用,并提供了临床采用这些技术的指导 | 介绍了AI和深度学习在骨折检测中的准确性,并讨论了其在临床实践中的应用潜力 | 尽管AI产品在增加,但关于放射科医生如何采用这些新技术的指导有限 | 探讨AI和深度学习算法在骨折诊断中的应用,并提供临床采用这些技术的指导 | 骨折诊断和AI技术在放射科的应用 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
13817 | 2024-10-18 |
Multivendor Comparison of Quantification Accuracy of Iodine Concentration and Attenuation Measurements by Dual-Energy CT: A Phantom Study
2022-11, AJR. American journal of roentgenology
DOI:10.2214/AJR.22.27753
PMID:35674353
|
研究论文 | 本研究比较了不同供应商、技术和代次的12种双能CT(DECT)扫描仪在碘浓度和衰减测量方面的定量准确性 | 本研究设计了一个包含七种不同碘浓度的质量控制幻影,并使用了多种扫描条件和重建算法,包括深度学习图像重建(DLIR),以评估不同DECT配置的定量准确性 | 本研究仅限于使用特定的质量控制幻影和有限的扫描条件,未涵盖所有可能的临床应用场景 | 比较不同供应商、技术和代次的双能CT扫描仪在碘浓度和衰减测量方面的定量准确性 | 双能CT扫描仪的定量准确性 | 医学影像 | NA | 双能CT(DECT) | 深度学习图像重建(DLIR) | 影像 | 12种不同扫描仪配置 |
13818 | 2024-10-18 |
Impact of Artificial Intelligence Assistance on Chest CT Interpretation Times: A Prospective Randomized Study
2022-11, AJR. American journal of roentgenology
DOI:10.2214/AJR.22.27598
PMID:35703413
|
研究论文 | 评估人工智能辅助平台在临床工作流程中对胸部CT解读时间的影响 | 研究展示了在真实临床环境中,使用自动化AI平台辅助胸部CT解读可以显著减少放射科医生的解读时间 | 研究仅在一个中心进行,样本量有限,且仅涉及三位放射科医生 | 评估AI辅助平台对胸部CT解读时间的影响 | 胸部CT扫描的解读时间 | 计算机视觉 | NA | 深度学习 | 卷积神经网络 | 图像 | 390名患者(204名女性,186名男性;平均年龄62.8 ± 13.3岁) |
13819 | 2024-10-18 |
Coronary CTA With AI-QCT Interpretation: Comparison With Myocardial Perfusion Imaging for Detection of Obstructive Stenosis Using Invasive Angiography as Reference Standard
2022-09, AJR. American journal of roentgenology
DOI:10.2214/AJR.21.27289
PMID:35441530
|
研究论文 | 本研究比较了人工智能定量CT(AI-QCT)解释的冠状动脉CTA与心肌灌注成像(MPI)在检测阻塞性冠状动脉疾病中的诊断性能 | AI-QCT在检测阻塞性冠状动脉疾病方面比MPI具有更高的诊断性能,并能显著减少不必要的下游侵入性测试和成本 | 本研究为回顾性事后分析,样本来自23个中心的CREDENCE试验,可能存在选择偏倚 | 比较AI-QCT解释的冠状动脉CTA与MPI在检测阻塞性冠状动脉疾病中的诊断性能,并评估其在诊断算法中的下游影响 | 冠状动脉CTA、MPI、AI-QCT、侵入性血管造影 | 计算机视觉 | 心血管疾病 | 深度学习 | NA | 图像 | 301名患者(88名女性和213名男性;平均年龄64.4±10.2岁) |
13820 | 2024-10-18 |
Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study
2022-08, AJR. American journal of roentgenology
DOI:10.2214/AJR.21.27255
PMID:35195431
|
研究论文 | 本研究评估了基于深度学习的重建(DLR)在降低低管电压儿童CT辐射剂量同时保持诊断图像质量方面的效果 | 首次比较了低剂量DLR图像与标准剂量迭代重建(IR)图像,并探索了DLR在低管电压扫描中的应用 | 本研究为回顾性研究,样本量有限,且仅限于6岁及以下的儿童 | 评估DLR在降低低管电压儿童CT辐射剂量同时保持图像质量方面的效果 | 6岁及以下的儿童 | 计算机视觉 | NA | 基于深度学习的重建(DLR) | 深度学习模型 | 图像 | 65名儿童(平均年龄25.0 ± 25.2个月) |