本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121 | 2025-07-21 |
ConNeCT: weakly supervised corneal confocal microscopy image inpainting network based on a diffusion model
2025-Jul-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.562924
PMID:40677830
|
研究论文 | 提出了一种基于扩散模型的弱监督角膜共聚焦显微镜图像修复网络ConNeCT,用于改善角膜神经形态定量分析的准确性 | 首次开发了专门用于CCM图像修复的深度学习方法,结合了轻量级引导扩散模型、U-Net辅助分割模型和改进的DDPM重采样算法 | 需要用户提供粗略的掩码作为输入,可能在实际应用中存在一定限制 | 提高角膜共聚焦显微镜图像的质量,以更准确地进行神经形态定量分析 | 角膜共聚焦显微镜图像 | 计算机视觉 | 神经退行性疾病 | 扩散模型,U-Net | DDPM, U-Net | 图像 | 手动标注的数据集(具体数量未提及) |
122 | 2025-07-21 |
Deep learning ocular aberration retrieval from simulated retinal images under straylight
2025-Jul-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.559749
PMID:40677828
|
研究论文 | 提出一种基于深度学习的方法,从带有杂散光的模拟PSF图像中检索潜在的波前像差 | 使用深度学习技术分离波前像差和杂散光的影响,实现高精度的波前预测 | 方法基于模拟数据,尚未在实际临床环境中验证 | 提高人眼光学质量的临床评估能力 | 人眼的点扩散函数(PSF)和波前像差 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 模拟PSF图像 |
123 | 2025-07-19 |
ROQUS: a retinal OCT quality and usability score
2025-Jul-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.564188
PMID:40677832
|
研究论文 | 提出了一种基于深度学习的视网膜OCT B扫描质量评估方法ROQUS,用于评估整体质量和临床可用性 | 采用排名策略生成无界分数,高分表示更高质量,且在识别有采集问题的B扫描上表现优于传统指标 | 未提及具体的数据集规模和多样性限制 | 开发一种客观的视网膜OCT B扫描质量评估方法,以改善临床研究和日常实践 | 视网膜OCT B扫描图像 | 数字病理 | 视网膜疾病 | 深度学习 | NA | 图像 | 内部和公共数据集,包含真实和模拟的采集问题 |
124 | 2025-07-21 |
Tracking conditioned fear in pair-housed mice using deep learning and real-time cue delivery
2025-Jul, Neurobiology of stress
IF:4.3Q1
DOI:10.1016/j.ynstr.2025.100742
PMID:40678084
|
研究论文 | 该研究开发了一种基于深度学习的开源软件,用于在配对饲养的小鼠中实时追踪条件恐惧行为 | 结合了开源软件和深度学习姿态估计技术,在生态相关环境中研究小鼠的条件恐惧行为 | 研究仅在小鼠模型中进行,结果向人类PTSD的转化需要进一步验证 | 开发新方法来研究创伤后应激障碍(PTSD)相关的条件恐惧行为 | 配对饲养的小鼠 | 数字病理学 | 创伤后应激障碍(PTSD) | 深度学习姿态估计 | 深度学习模型 | 视频 | 配对饲养的小鼠群体(具体数量未明确说明) |
125 | 2025-07-21 |
Artificial intelligence in orthopedic trauma: a comprehensive review
2025-Jul-01, Injury
IF:2.2Q2
DOI:10.1016/j.injury.2025.112570
PMID:40683054
|
综述 | 本文全面回顾了人工智能在骨科创伤领域的应用现状、研究进展及未来方向 | 分析了2015至2025年间217项研究,揭示了AI在骨折检测、分类、预测和分割等任务中的卓越表现,并指出未来应关注多模态方法和临床验证 | 仅14.5%的研究经过外部验证,仅3.2%报告了前瞻性临床验证,临床整合和数据标准化仍面临挑战 | 评估人工智能在骨科创伤领域的应用现状及未来发展潜力 | 骨科创伤相关研究,包括骨折检测、分类、预测和分割等 | 医疗人工智能 | 骨科创伤 | 深度学习与传统机器学习方法 | NA | 医学影像数据 | 217项研究(2015-2025年),其中52.5%发表于2024年 |
126 | 2025-07-21 |
Multicenter Evaluation of Interpretable AI for Coronary Artery Disease Diagnosis from PET Biomarkers
2025-Jun-30, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.06.19.25329944
PMID:40630571
|
研究论文 | 本研究开发了一种整合关键临床PET MPI参数的人工智能模型,以提高阻塞性冠状动脉疾病(CAD)的诊断准确性 | 该研究首次将多种PET MPI成像生物标志物整合到一个AI模型中,提供自动化和可解释的CAD诊断预测 | 研究为回顾性设计,且仅纳入了特定条件的患者(180天内接受过侵入性冠状动脉造影且无既往CAD病史) | 提高阻塞性冠状动脉疾病的诊断准确性 | 接受心脏PET/CT检查的患者 | 数字病理学 | 心血管疾病 | PET/CT, 深度学习, XGBoost | XGBoost | 医学影像 | 训练集386例,外部测试集1,278例(总样本来自17,348例患者中的1,664例) |
127 | 2025-07-21 |
Identification and validation of synergistic drug strategies targeting macrophage polarization in triple-negative breast cancer via single-cell transcriptomics and deep learning
2025-Jun-26, Translational oncology
IF:4.5Q1
DOI:10.1016/j.tranon.2025.102457
PMID:40580873
|
研究论文 | 通过单细胞转录组学和深度学习技术,识别并验证针对三阴性乳腺癌中巨噬细胞极化的协同药物策略 | 开发了一个基于巨噬细胞分化的分类器(MMDCSS),并发现非那雄胺可作为ZBTB20调节剂,逆转肿瘤诱导的M2巨噬细胞极化 | 样本量较小(24名TNBC患者),且研究结果需进一步临床验证 | 探索三阴性乳腺癌(TNBC)中巨噬细胞极化的调控机制及潜在治疗策略 | 三阴性乳腺癌(TNBC)患者样本及巨噬细胞极化过程 | 数字病理学 | 乳腺癌 | 单细胞RNA测序(scRNA-seq)、机器学习、伪时间轨迹映射 | 深度学习 | 转录组数据 | 24名TNBC患者 |
128 | 2025-07-21 |
YOLOv8-DuckPluck: A lightweight target detection model for cherry valley duck feather pecking site detection
2025-Jun-26, Poultry science
IF:3.8Q1
DOI:10.1016/j.psj.2025.105484
PMID:40618564
|
研究论文 | 本文提出了一种基于YOLOv8的樱桃谷鸭羽毛啄击点检测轻量级模型YOLOv8-DuckPluck,旨在解决高密度多目标复杂环境下现有深度学习模型处理速度慢、参数量大和模型体积大的问题 | 在主干网络中集成了新型轻量级多尺度特征提取模块NeoMSM-C2f,采用DyHead作为检测头动态调整检测策略,并通过知识蒸馏进一步提升模型精度,实现了检测速度与准确率的平衡 | 未明确说明模型在不同光照条件或羽毛遮挡严重情况下的鲁棒性表现 | 开发适用于家禽啄羽行为实时监测的高效目标检测模型 | 樱桃谷鸭的羽毛啄击行为 | 计算机视觉 | NA | 知识蒸馏 | YOLOv8改进模型(YOLOv8-DuckPluck) | 图像 | 未明确说明具体样本数量(基于樱桃谷鸭啄羽场景图像) |
129 | 2025-07-21 |
Topo-CNN: Retinal Image Analysis with Topological Deep Learning
2025-Jun-25, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01575-7
PMID:40563040
|
研究论文 | 提出了一种基于拓扑深度学习的视网膜图像分析框架Topo-CNN,用于自动化和可解释的视网膜疾病诊断 | 结合拓扑数据分析(TDA)提取几何和结构特征,并与预训练的CNN特征融合,形成混合深度模型Topo-CNN | 未提及模型在不同医疗设备或临床环境中的泛化能力 | 提高视网膜疾病(如糖尿病视网膜病变、青光眼和年龄相关性黄斑变性)的自动诊断性能 | 视网膜图像 | 数字病理 | 糖尿病视网膜病变、青光眼、年龄相关性黄斑变性 | Topological Data Analysis (TDA), CNN | Topo-CNN (基于ResNet-50的混合模型) | 图像 | 三个基准数据集:APTOS(二分类和五分类糖尿病视网膜病变)、ORIGA(青光眼)、IChallenge-AMD(年龄相关性黄斑变性) |
130 | 2025-07-21 |
Region-based U-nets for fast, accurate, and scalable deep brain segmentation: Application to Parkinson Plus Syndromes
2025-Jun-24, NeuroImage. Clinical
DOI:10.1016/j.nicl.2025.103807
PMID:40592210
|
研究论文 | 本文介绍了一种基于区域U-net的深度学习方法,用于快速、准确且可扩展的深部脑结构分割,特别针对帕金森叠加综合征 | 通过将脑图像分割为围绕脑干、脑室系统和纹状体的目标区域,优化GPU使用并显著减少训练时间,同时保持高准确性 | 未明确提及具体限制,但可能受限于数据集的大小和多样性 | 开发一种高效的深度学习方法,用于早期诊断与年龄相关的神经退行性疾病 | 12个与帕金森叠加综合征相关的深部脑结构 | 数字病理学 | 帕金森叠加综合征 | MRI分割 | U-net | 图像 | 包括660名受试者的临床数据集,涵盖健康对照组和各种运动障碍患者 |
131 | 2025-07-21 |
Attention-Based Whole-Slide Image Compression Achieves Pathologist-Level Prescreening of Multiorgan Routine Histopathology Biopsies
2025-Jun-23, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2025.100827
PMID:40562215
|
research paper | 该研究提出了一种基于注意力机制的全切片图像压缩方法NIC-A,用于多器官常规组织病理活检的病理学家级别预筛查 | 引入了slide packing方法,将同一组织块的多张切片合并为单个图像,并利用弱监督深度学习实现无需手动标注的全切片图像分类 | 仅在2个欧洲中心的队列中进行了验证,需要更多外部验证 | 开发自动化癌症检测方法以减轻病理学家在常规数字病理诊断中的工作量 | 结肠和宫颈组织切片以及十二指肠活检 | digital pathology | colorectal cancer, cervical cancer, celiac disease | weakly supervised deep learning | NIC-A (Neural Image Compression with Attention) | whole-slide images | 12,580张全切片图像,来自9,141个组织块 |
132 | 2025-07-21 |
Enhanced glaucoma detection using U-Net and U-Net+ architectures using deep learning techniques
2025-Jun-06, Photodiagnosis and photodynamic therapy
IF:3.1Q2
DOI:10.1016/j.pdpdt.2025.104621
PMID:40482945
|
研究论文 | 本研究比较了多种图像处理和深度学习方法,提出了一种增强型青光眼诊断方法 | 结合了中值滤波降噪、U-Net和U-Net+架构的视盘分割、胶囊网络特征提取以及极限学习机分类诊断 | NA | 提高青光眼诊断的准确性和可靠性 | 青光眼诊断 | 计算机视觉 | 青光眼 | 深度学习技术 | U-Net, U-Net+, Capsule Networks, ELM | 图像 | 三个数据集(DRISHTI-GS, DRIONS-DB, HRF) |
133 | 2025-07-21 |
UniScore, a Unified and Universal Measure for Peptide Identification by Multiple Search Engines
2025-Jun-02, Molecular & cellular proteomics : MCP
IF:6.1Q1
DOI:10.1016/j.mcpro.2025.101010
PMID:40466863
|
研究论文 | 提出UniScore作为整合和标准化多种搜索引擎输出的度量标准,用于分析基于LC/MS/MS的自下而上蛋白质组学的数据依赖性采集(DDA)数据 | UniScore仅通过匹配候选肽的氨基酸序列与产物离子谱来计算,独立于分数值控制接受标准,且能处理大量数据而无需大量计算资源 | 未明确提及具体局限性 | 开发一种统一且通用的度量标准,用于整合多种搜索引擎在蛋白质组学数据分析中的输出 | 数据依赖性采集(DDA)数据,包括大规模全球蛋白质组数据和磷酸化蛋白质组数据 | 蛋白质组学 | NA | LC/MS/MS, 自下而上蛋白质组学 | NA | 质谱数据 | 大规模全球蛋白质组数据和磷酸化蛋白质组数据 |
134 | 2025-07-21 |
Referenceless 4D flow cardiovascular magnetic resonance with deep learning
2025-Jun-02, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
IF:4.2Q1
DOI:10.1016/j.jocmr.2025.101920
PMID:40467036
|
研究论文 | 本研究利用深度学习预测心血管4D流动磁共振成像中的参考编码,以减少扫描时间 | 提出了一种无需参考编码的4D流动心血管磁共振成像方法,通过深度学习预测参考编码,减少了25%的数据采集量 | 在左心室和右心室的总湍流动能计算中误差较大,最高达到-77.17%和24.96% | 提高心血管疾病评估效率,减少4D流动磁共振成像的扫描时间 | 126名患有不同类型心肌病的患者 | 医学影像分析 | 心血管疾病 | 4D流动心血管磁共振成像(4D flow CMR) | U-NetADV, U-NetVEL | 三维速度数据 | 126名患者(113名用于训练,13名用于测试) |
135 | 2025-07-21 |
Efficiency of oral keratinized gingiva detection and measurement based on convolutional neural network
2025-Jun, Journal of periodontology
IF:4.2Q1
DOI:10.1002/JPER.24-0151
PMID:39007745
|
研究论文 | 本研究评估了不同卷积神经网络(CNN)在深度学习算法中检测和测量口腔内照片中角化牙龈的效率 | 使用ResNet50模型自动分割角化牙龈,准确率达到91.4%,并与临床医生的测量结果高度一致 | 研究仅使用了600张照片,样本量相对较小,且测量结果受操作者、表型和颌骨类型的影响 | 评估CNN在角化牙龈检测和测量中的性能 | 口腔内照片中的角化牙龈 | 计算机视觉 | 牙周疾病 | 深度学习 | CNN, ResNet50 | 图像 | 600张口腔内照片(来自1200张照片) |
136 | 2025-07-21 |
Quantifying axonal features of human superficial white matter from three-dimensional multibeam serial electron microscopy data assisted by deep learning
2025-Jun, NeuroImage
IF:4.7Q1
DOI:10.1016/j.neuroimage.2025.121212
PMID:40222502
|
研究论文 | 利用深度学习辅助的三维多光束连续电子显微镜数据量化人类浅表白质的轴突特征 | 首次在纳米级分辨率下对人类浅表白质的短程关联纤维进行详细的形态学表征,并提供了大规模的3D电子显微镜数据集和精确的分割结果 | 研究仅基于一个特定的组织体积(200×200×112μm),可能无法代表所有浅表白质的轴突特征 | 量化人类浅表白质中轴突的形态特征,以增进对皮质-皮质连接的理解 | 人类浅表白质中的短程关联纤维 | 数字病理学 | NA | 多光束扫描电子显微镜(EM) | 深度卷积神经网络(CNNs) | 三维电子显微镜图像 | 128,285个有髓鞘轴突,其中70,321个长度超过10μm,2,102个长度超过100μm |
137 | 2025-07-21 |
SAFFusion: a saliency-aware frequency fusion network for multimodal medical image fusion
2025-Jun-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.555458
PMID:40677382
|
研究论文 | 提出了一种基于显著性感知的频率融合网络SAFFusion,用于多模态医学图像融合 | 引入Mamba-UNet多尺度编码器-解码器架构,结合轮廓波变换和双分支频率特征融合模块,以及潜在低秩表示(LatLRR)评估图像显著性 | 未明确提及具体局限性 | 提升多模态医学图像融合效果,为阿尔茨海默病诊断和脑肿瘤检测与分割等临床决策提供更全面的参考 | 多模态医学图像(CT/MRI、SPECT/MRI、PET/MRI) | 数字病理学 | 阿尔茨海默病、脑肿瘤 | 轮廓波变换、潜在低秩表示(LatLRR) | Mamba-UNet | 医学图像 | 未明确提及具体样本量 |
138 | 2025-07-21 |
Deep learning for the detection of colon polyps with malignant potential: ex vivo classification using feature-enhanced optical coherence tomography (OCT) images
2025-Jun-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.555185
PMID:40677387
|
研究论文 | 本研究提出了一种基于深度学习的框架,利用特征增强的光学相干断层扫描(OCT)图像对具有恶性潜能的结肠息肉进行离体分类 | 通过提取OCT图像中的额外特征作为疾病生物标志物,并结合深度学习分类模型进行决策级融合,提高了分类准确性 | 研究使用的是离体样本,尚未在临床环境中验证 | 提高结肠息肉恶性潜能检测的准确性,优化结直肠癌筛查效果 | 结肠息肉(包括正常、增生性、腺瘤和无蒂锯齿状腺瘤) | 数字病理学 | 结直肠癌 | 光学相干断层扫描(OCT) | 深度学习分类模型 | OCT图像 | NA |
139 | 2025-07-21 |
Perturbation response scanning of drug-target networks: Drug repurposing for multiple sclerosis
2025-Jun, Journal of pharmaceutical analysis
IF:6.1Q1
DOI:10.1016/j.jpha.2025.101295
PMID:40678478
|
研究论文 | 本文提出了一种结合弹性网络模型(ENM)和扰动响应扫描(PRS)的药物靶点网络分析方法,用于多发性硬化症(MS)的药物重定位 | 首次将PRS分析应用于药物靶点网络,结合深度学习和网络扰动框架,为MS药物重定位提供新方法 | 研究仅针对MS,未验证方法在其他复杂疾病中的普适性 | 开发网络扰动建模方法用于药物重定位 | 多发性硬化症(MS)及其相关药物靶点网络 | 网络医学 | 多发性硬化症 | 弹性网络模型(ENM)、扰动响应扫描(PRS)、深度学习、随机游走重启算法 | 深度学习模型 | 基因数据、网络数据 | 基于杯状酮诱导的慢性小鼠模型进行验证 |
140 | 2025-07-21 |
druglikeFilter 1.0: An AI powered filter for collectively measuring the drug-likeness of compounds
2025-Jun, Journal of pharmaceutical analysis
IF:6.1Q1
DOI:10.1016/j.jpha.2025.101298
PMID:40678482
|
研究论文 | 介绍了一个基于深度学习的框架druglikeFilter,用于从四个关键维度评估化合物的药物相似性 | 首次提出一个综合评估药物相似性的深度学习框架,涵盖物理化学规则、毒性警报、结合亲和力和化合物可合成性四个维度 | 未提及具体性能指标或与其他工具的对比结果 | 降低药物开发成本并提高成功率 | 化合物库中的化合物 | 机器学习 | NA | 深度学习 | NA | 化学化合物数据 | 未提及具体样本数量 |