深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24513 篇文献,本页显示第 14141 - 14160 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
14141 2024-10-18
Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT
2024-01, AJR. American journal of roentgenology
研究论文 开发并验证了一种用于胸部CT上纯磨玻璃结节(pGGNs)中区分浸润性腺癌(IAC)与其他实体的自动深度学习模型 提出了Lung-PNet,一种3D深度学习模型,用于自动分割和分类pGGNs中的IAC与其他实体 研究为回顾性,样本量相对较小,且仅限于特定时间段内的病例 开发和验证一种自动深度学习模型,用于区分胸部CT上pGGNs中的IAC与其他实体 胸部CT上的纯磨玻璃结节(pGGNs),包括AAH、AIS、MIA和IAC 计算机视觉 肺癌 深度学习 3D深度学习模型 影像 402名患者,共448个pGGNs
14142 2024-10-18
Editorial Comment: Implementing an End-to-End Deep Learning Model in the Task of Differentiating Pure Ground-Glass Nodules on Chest CT
2024-Jan, AJR. American journal of roentgenology
NA NA NA NA NA NA NA NA NA NA NA NA
14143 2024-10-18
Artificial Intelligence for Assessment of Endotracheal Tube Position on Chest Radiographs: Validation in Patients From Two Institutions
2024-01, AJR. American journal of roentgenology
研究论文 研究评估了基于深度学习的人工智能系统在胸部X光片上检测气管插管位置的性能 开发并验证了一种基于深度学习的人工智能系统,用于在胸部X光片上自动检测气管插管的存在和位置 研究仅限于两个机构的数据,且样本量较小 评估人工智能系统在胸部X光片上检测气管插管位置的准确性和及时性 气管插管在胸部X光片上的位置 计算机视觉 NA 深度学习 深度学习模型 图像 539张胸部X光片(机构A,505名患者),637张胸部X光片(机构A,302名患者),546张胸部X光片(机构B,83名患者)
14144 2024-10-18
Computational models can distinguish the contribution from different mechanisms to familiarity recognition
2024-01, Hippocampus IF:2.4Q3
研究论文 本文设计了两种结合深度学习和Hebbian学习规则的计算模型,分别用于模拟熟悉感,并通过比较两种模型的性能来揭示其内在机制 本文提出了一种新的方法来区分不同熟悉感机制的贡献,并通过两种互补模型提出了新的可测试预测 Hebbian模型在大训练集规模下无法拟合人类行为数据,且仅对图像同质性高度敏感 研究不同机制对熟悉感识别的贡献,并提出新的可测试预测 熟悉感及其相关机制 机器学习 NA 深度学习 Hebbian模型和anti-Hebbian模型 图像 自然图像
14145 2024-10-18
High-Speed On-Site Deep Learning-Based FFR-CT Algorithm: Evaluation Using Invasive Angiography as the Reference Standard
2023-10, AJR. American journal of roentgenology
研究论文 本研究评估了一种基于深度学习的高速现场FFR-CT算法在诊断冠状动脉狭窄中的表现 开发了一种基于深度学习的高速现场FFR-CT算法,显著缩短了分析时间,并提高了诊断准确性 研究为回顾性,样本量相对较小,且仅限于特定时间段内的患者 评估基于深度学习的FFR-CT算法在诊断冠状动脉狭窄中的诊断性能 冠状动脉狭窄的诊断和评估 计算机视觉 心血管疾病 深度学习 3D计算流体动力学模型 图像 59名患者(46名男性,13名女性;平均年龄66.5 ± 10.2岁)
14146 2024-10-18
Editorial Comment: On-Site Deep Learning-Based FFR-CT-A Novel Method to Evaluate Functionally Significant Stenosis
2023-Oct, AJR. American journal of roentgenology
NA NA NA NA NA NA NA NA NA NA NA NA
14147 2024-10-18
Development and External Validation of an Artificial Intelligence Model for Identifying Radiology Reports Containing Recommendations for Additional Imaging
2023-09, AJR. American journal of roentgenology
研究论文 开发并验证了一种基于BERT的人工智能模型,用于识别放射学报告中包含额外影像建议的部分 使用BERT模型在识别放射学报告中额外影像建议方面表现优于传统的机器学习模型 研究仅限于特定时间段和特定医疗机构的放射学报告 开发和验证一种人工智能模型,用于识别放射学报告中包含额外影像建议的部分 放射学报告中的额外影像建议 机器学习 NA BERT BERT 文本 6300份放射学报告,涉及7419名患者
14148 2024-10-18
Single-Atom Level Determination of 3-Dimensional Surface/Interface Atomic Structures via Deep Learning-Assisted Atomic Electron Tomography
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada IF:2.9Q1
NA NA NA NA NA NA NA NA NA NA NA NA
14149 2024-10-18
Improving Porosity Analysis in Additive Manufacturing through 3D Resolution Recovery Using Deep Learning-Based Reconstruction
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada IF:2.9Q1
NA NA NA NA NA NA NA NA NA NA NA NA
14150 2024-10-18
Performance of Deep Learning-based Image Denoising in Image Reconstruction for Various Acquisition Conditions: a Simulated Phantom Study
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada IF:2.9Q1
NA NA NA NA NA NA NA NA NA NA NA NA
14151 2024-10-18
Deep Learning for Automated Quantification of Irradiation Defects in TEM Data: Relating Pixel-level Errors to Defect Properties
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada IF:2.9Q1
NA NA NA NA NA NA NA NA NA NA NA NA
14152 2024-10-18
Synthetic Data for Deep Learning: Segmentation of PCB X-Ray Images
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada IF:2.9Q1
NA NA NA NA NA NA NA NA NA NA NA NA
14153 2024-10-18
Deep Learning Design of Graphene-Reinforced Polyurethane Foams from SEM Microstructure Images and Style-based Generative Adversarial Networks
2023-Jul-22, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada IF:2.9Q1
NA NA NA NA NA NA NA NA NA NA NA NA
14154 2024-10-18
Thyroid Nodules on Ultrasound in Children and Young Adults: Comparison of Diagnostic Performance of Radiologists' Impressions, ACR TI-RADS, and a Deep Learning Algorithm
2023-03, AJR. American journal of roentgenology
研究论文 比较放射科医生的总体印象、ACR TI-RADS和深度学习算法在儿童和年轻成人甲状腺结节超声诊断中的表现 本文创新点在于比较了放射科医生的总体印象、ACR TI-RADS和深度学习算法在甲状腺结节诊断中的敏感性和特异性,发现ACR TI-RADS和深度学习算法在敏感性上优于放射科医生的总体印象 本文的局限性在于样本量较小,且仅限于儿童和年轻成人,研究结果可能不适用于所有年龄段 比较不同诊断方法在儿童和年轻成人甲状腺结节超声诊断中的表现 儿童和年轻成人的甲状腺结节 计算机视觉 甲状腺疾病 深度学习算法 深度学习 图像 139名患者(中位年龄17.5岁;119名女性患者,20名男性患者)
14155 2024-10-18
Abdominopelvic CT Image Quality: Evaluation of Thin (0.5-mm) Slices Using Deep Learning Reconstruction
2023-03, AJR. American journal of roentgenology
研究论文 本研究评估了使用深度学习重建(DLR)的0.5毫米薄层腹部和盆腔CT图像质量,并与0.5毫米和3.0毫米的混合迭代重建(HIR)图像进行了比较 本研究首次使用深度学习重建技术生成低噪声的薄层CT图像,并展示了其在图像质量和噪声方面的优势 本研究为回顾性研究,样本量较小,且未进行进一步的诊断性能研究 比较深度学习重建的薄层CT图像与传统混合迭代重建图像的质量 腹部和盆腔CT图像 计算机视觉 NA 深度学习重建(DLR) NA 图像 50名患者(31名男性和19名女性;中位年龄64岁)
14156 2024-10-18
Editorial Comment: Deep Learning Image Reconstruction-Do Better Images Make a Better Radiologist?
2023-Mar, AJR. American journal of roentgenology
NA NA NA NA NA NA NA NA NA NA NA NA
14157 2024-10-18
Utility of Normalized Body Composition Areas, Derived From Outpatient Abdominal CT Using a Fully Automated Deep Learning Method, for Predicting Subsequent Cardiovascular Events
2023-Feb, AJR. American journal of roentgenology
研究论文 本研究探讨了使用全自动深度学习方法从门诊腹部CT中提取的归一化身体成分区域对后续心血管事件的预测能力 本研究首次使用全自动深度学习算法从常规CT扫描中提取身体成分测量值,并独立于传统体重指标预测心血管风险 本研究为回顾性研究,样本主要为黑人和白人患者,可能存在选择偏倚 确定通过全自动深度学习算法从常规CT扫描中获得的身体成分测量值是否能独立于体重、BMI和其他心血管风险因素预测后续心血管事件 9752名门诊患者,其中5519名女性和4233名男性,平均年龄53.2岁,890名患者自报为黑人,8862名自报为白人 计算机视觉 心血管疾病 深度学习 NA 图像 9752名门诊患者
14158 2024-10-18
Detectability of Small Low-Attenuation Lesions With Deep Learning CT Image Reconstruction: A 24-Reader Phantom Study
2023-Feb, AJR. American journal of roentgenology
研究论文 本研究评估了深度学习图像重建(DLIR)算法在低对比度检测性能和辐射节省潜力方面与滤波反投影(FBP)和迭代重建(IR)的比较 DLIR算法在减少辐射剂量的情况下,仍能保持低对比度病变的检测性能,这是传统IR技术的一个主要缺点 研究仅在模拟人体的多阅读器非劣效性设计和任务型观察者模型中进行,未在真实临床环境中验证 评估DLIR算法在低对比度检测性能和辐射节省潜力方面的表现 低对比度检测性能和辐射节省潜力 计算机视觉 NA 深度学习图像重建(DLIR) NA 图像 24名不同经验水平的阅读者评估图像
14159 2024-10-18
Editorial Comment: More Evidence Supporting Deep Learning Reconstructions in Abdominal CT-What Should We Do?
2023-Feb, AJR. American journal of roentgenology
NA NA NA NA NA NA NA NA NA NA NA NA
14160 2024-10-18
Artificial Intelligence (AI) for Fracture Diagnosis: An Overview of Current Products and Considerations for Clinical Adoption, From the AJR Special Series on AI Applications
2022-12, AJR. American journal of roentgenology
综述 本文综述了人工智能(AI)和深度学习算法在骨折诊断中的应用,并提供了临床采用这些技术的指导 介绍了AI和深度学习在骨折检测中的准确性,并讨论了其在临床实践中的应用潜力 尽管AI产品在增加,但关于放射科医生如何采用这些新技术的指导有限 探讨AI和深度学习算法在骨折诊断中的应用,并提供临床采用这些技术的指导 骨折诊断和AI技术在放射科的应用 计算机视觉 NA 深度学习 NA 图像 NA
回到顶部