本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14141 | 2025-04-09 |
WPR-Net: A Deep Learning Protocol for Highly Accelerated NMR Spectroscopy with Faithful Weak Peak Reconstruction
2025-Apr-08, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c04830
PMID:40067126
|
research paper | 提出一种深度学习架构WPR-Net,用于高度加速的NMR光谱学并可靠重建弱峰 | 该深度学习协议能够消除欠采样伪影,并在高度稀疏采样密度或严重噪声条件下重建高质量多维NMR光谱信号 | NA | 加速多维NMR光谱学的实现并提高弱峰重建的准确性 | 多维NMR光谱信号 | machine learning | NA | NMR spectroscopy | deep learning architecture (WPR-Net) | spectral data | NA | NA | NA | NA | NA |
14142 | 2025-04-09 |
Deep learning assisted high-resolution microscopy image processing for phase segmentation in functional composite materials
2025-Apr-08, Journal of microscopy
IF:1.5Q3
DOI:10.1111/jmi.13413
PMID:40195694
|
research paper | 该研究提出了一种基于深度学习的图像处理方法,用于高分辨率显微镜图像的相位分割和成分检测 | 提出了一种新的基于FFT的分割工作流程,并利用训练好的U-Net模型进行相位分割,这在复合材料的相位和成分检测中是一个尚未充分探索的领域 | NA | 开发一种高效的高分辨率显微镜图像分析方法,用于电池研究中的相位分割和成分检测 | 高分辨率透射电子显微镜(TEM)图像中的复合材料的相位和成分 | computer vision | NA | 深度学习 | U-Net | image | NA | NA | NA | NA | NA |
14143 | 2025-04-09 |
Protein-Ligand Structure and Affinity Prediction in CASP16 Using a Geometric Deep Learning Ensemble and Flow Matching
2025-Apr-08, Proteins
IF:3.2Q2
DOI:10.1002/prot.26827
PMID:40195868
|
研究论文 | 本文介绍了一种名为MULTICOM_ligand的深度学习方法,用于预测蛋白质-配体结构和结合亲和力,并在CASP16中表现优异 | 提出了一个结合结构共识排序和无监督姿势排序的深度学习集成方法,以及一个新的深度生成流匹配模型,用于联合预测结构和结合亲和力 | 未提及具体局限性 | 解决蛋白质-配体结构和结合亲和力预测的基础性问题,以支持生物技术和药物发现 | 蛋白质-配体结构和结合亲和力 | 机器学习 | NA | 深度学习 | 深度学习集成和流匹配模型 | 蛋白质-配体结构数据 | NA | NA | NA | NA | NA |
14144 | 2025-04-09 |
Dimensionality Reduction of Genetic Data using Contrastive Learning
2025-Apr-07, Genetics
IF:3.3Q2
DOI:10.1093/genetics/iyaf068
PMID:40194517
|
research paper | 该论文介绍了一种利用对比学习进行遗传数据降维的框架,以生成类似PCA的群体可视化 | 定义了一种优于常用对比学习损失函数的损失函数,并针对SNP基因型数据集定制了数据增强方案 | 未明确提及具体局限性 | 开发一种适用于遗传数据的降维方法,以更好地保留局部和全局结构 | 狗和人类的基因型数据 | machine learning | NA | 对比学习 | 深度学习神经网络 | SNP基因型数据 | 两个数据集(狗和人类基因型) | NA | NA | NA | NA |
14145 | 2025-04-09 |
Severity Classification of Pediatric Spinal Cord Injuries Using Structural MRI Measures and Deep Learning: A Comprehensive Analysis Across All Vertebral Levels
2025-Apr-07, AJNR. American journal of neuroradiology
DOI:10.3174/ajnr.A8770
PMID:40194851
|
research paper | 本研究通过结构MRI测量和深度学习技术,对儿童脊髓损伤的严重程度进行分类 | 结合横截面积、前后宽度和左右宽度等结构参数与深度学习技术,首次在儿童脊髓损伤中进行全面分析 | 样本量较小,仅61名参与者,且仅包括慢性脊髓损伤患者 | 评估儿童脊髓损伤患者的结构特征,并开发基于深度学习的分类方法 | 20名慢性脊髓损伤儿童和41名正常发育儿童 | digital pathology | spinal cord injury | MRI扫描和深度学习 | CNN | MRI图像 | 61名儿童(20名脊髓损伤患者和41名正常发育儿童) | NA | NA | NA | NA |
14146 | 2025-04-09 |
Transformer-based artificial intelligence on single-cell clinical data for homeostatic mechanism inference and rational biomarker discovery
2025-Mar-25, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.03.24.25324556
PMID:40196278
|
research paper | 该研究开发了一种基于Transformer的人工智能流程,用于单细胞临床数据分析,以推断稳态机制并发现生物标志物 | 提出了一个通用的、可解释的AI流程,包括用于预测的MIST模型和用于可解释性的单细胞FastShap模型,能够解释70-82%的血细胞群体大小变化 | 研究仅针对血液细胞群体,未涉及其他组织或细胞类型 | 利用单细胞数据分析生物系统中的模式和机制,并发现潜在的临床相关生物标志物 | 循环红细胞(RBC)、白细胞(WBC)和血小板(PLT)的单细胞测量数据 | machine learning | sepsis, heart disease, diabetes | single-cell measurement | Transformer (MIST), FastShap | single-cell clinical data | 大量常规临床数据(具体数量未提及) | NA | NA | NA | NA |
14147 | 2025-04-09 |
Synthetic Diffusion Tensor Imaging Maps Generated by 2D and 3D Probabilistic Diffusion Models: Evaluation and Applications
2025-Feb-25, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.21.639511
PMID:40060678
|
research paper | 评估和比较2D和3D概率扩散模型生成的合成扩散张量成像(DTI)图的质量及其在下游任务中的应用 | 首次评估和比较2D和3D DDPMs生成的合成DTI图的质量及其在下游任务中的表现,并展示3D合成优于2D切片生成 | 研究仅评估了MD图,未涵盖DTI所有参数;下游任务仅涉及性别分类和痴呆分类 | 解决DTI数据稀缺和隐私问题,并通过合成数据增强深度学习方法的训练数据 | 合成DTI MD图及其在性别分类和痴呆分类任务中的应用 | digital pathology | dementia | denoising diffusion probabilistic models (DDPMs) | 2D和3D CNNs | image | NA | NA | NA | NA | NA |
14148 | 2025-10-07 |
CellSAM: A Foundation Model for Cell Segmentation
2025-Feb-16, bioRxiv : the preprint server for biology
DOI:10.1101/2023.11.17.567630
PMID:38045277
|
研究论文 | 提出一种用于细胞分割的通用基础模型CellSAM,通过提示工程方法在多种细胞成像数据上实现跨域泛化 | 基于Segment Anything Model开发提示工程方法进行掩码生成,结合目标检测器CellFinder自动检测细胞并提示SAM生成分割结果 | 未明确说明模型在特定复杂场景下的性能限制或对某些特殊细胞类型的适用性 | 开发能够跨域泛化的通用细胞分割模型 | 哺乳动物细胞、酵母和细菌的细胞成像数据 | 计算机视觉 | NA | 细胞成像技术 | 基础模型,目标检测模型 | 细胞成像数据 | NA | NA | Segment Anything Model (SAM) | 零样本性能,少样本学习性能 | NA |
14149 | 2025-04-09 |
Deep learning-based hyperspectral technique identifies metastatic lymph nodes in oral squamous cell carcinoma-A pilot study
2025-Feb, Oral diseases
IF:2.9Q1
DOI:10.1111/odi.15067
PMID:39005220
|
研究论文 | 本研究基于高光谱成像和深度学习技术,开发了一种用于检测口腔鳞状细胞癌转移淋巴结中癌细胞的系统 | 采用改进的ResUNet算法分析癌细胞与淋巴细胞以及肿瘤组织与正常组织之间的光谱曲线差异 | 研究样本量较小,仅为45例口腔鳞状细胞癌患者的转移淋巴结 | 建立一种高精度、高效率的病理诊断方法,用于识别口腔鳞状细胞癌转移淋巴结中的肿瘤组织 | 45例口腔鳞状细胞癌(OSCC)患者的转移淋巴结连续切片 | 数字病理 | 口腔鳞状细胞癌 | 高光谱成像 | 改进的ResUNet | 高光谱图像 | 45例OSCC患者的转移淋巴结 | NA | NA | NA | NA |
14150 | 2025-04-09 |
An automated approach for predicting HAMD-17 scores via divergent selective focused multi-heads self-attention network
2024-07, Brain research bulletin
IF:3.5Q2
|
研究论文 | 介绍了一种名为DSFMANet的深度学习模型,用于自动预测抑郁症患者的HAMD-17评分 | 提出了一种多分支结构的自注意力网络,通过人工配置不同分支的注意力焦点因子,实现了对不同子频带的注意力分布 | 未提及具体的数据集规模或模型在其他疾病上的泛化能力 | 提高抑郁症诊断的准确性,为临床决策提供支持 | 抑郁症患者的HAMD-17评分 | 机器学习 | 抑郁症 | 深度学习 | DSFMANet(多分支自注意力网络) | EEG信号 | NA | NA | NA | NA | NA |
14151 | 2025-04-09 |
Regulated Behavior in Living Cells with Highly Aligned Configurations on Nanowrinkled Graphene Oxide Substrates: Deep Learning Based on Interplay of Cellular Contact Guidance
2024-01-16, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.2c09815
PMID:38099607
|
研究论文 | 研究通过纳米皱纹石墨烯氧化物基底调控细胞行为,并利用深度学习技术解析细胞反应 | 开发了高度有序的纳米皱纹石墨烯氧化物表面,结合深度学习技术精确解析细胞行为 | 研究仅针对L929成纤维细胞和HT22海马神经元细胞,未涉及其他细胞类型 | 探索纳米拓扑结构对细胞行为的调控机制及其在组织工程中的应用 | L929成纤维细胞和HT22海马神经元细胞 | 数字病理学 | NA | 深度学习 | DL网络 | 图像 | L929成纤维细胞和HT22海马神经元细胞 | NA | NA | NA | NA |
14152 | 2025-04-09 |
Altered Motor Activity Patterns within 10-Minute Timescale Predict Incident Clinical Alzheimer's Disease
2024, Journal of Alzheimer's disease : JAD
DOI:10.3233/JAD-230928
PMID:38393904
|
研究论文 | 研究通过运动活动的分形模式变化预测临床阿尔茨海默病的发生 | 首次在10分钟时间尺度内发现运动活动分形模式变化与阿尔茨海默病临床发病的最强关联 | 研究仅基于运动活动数据,未结合其他生物标志物 | 确定运动活动分形调节(FMAR)在哪些时间尺度的变化最能预测阿尔茨海默病的临床发病 | 1,077名参与者,其中270人在随访期间出现临床阿尔茨海默病 | 数字病理学 | 阿尔茨海默病 | 活动记录仪(actigraphy)和深度学习 | DeepSurv, Cox模型, 随机生存森林 | 时间序列运动活动数据 | 1,077名参与者,随访长达15年 | NA | NA | NA | NA |
14153 | 2025-10-07 |
Detection of cognitive load during computer-aided education using infrared sensors
2025-Dec, Cognitive neurodynamics
IF:3.1Q2
DOI:10.1007/s11571-025-10242-0
PMID:40191173
|
研究论文 | 本研究使用功能近红外光谱技术检测计算机辅助教育中的认知负荷 | 提出基于小波散射变换的特征提取方法和一维卷积神经网络,用于自动特征工程和分类 | 1D CNN的计算时间和内存使用量显著高于传统机器学习方法 | 检测计算机辅助教育过程中的认知负荷 | 14名健康受试者的fNIRS脑信号数据 | 机器学习 | NA | 功能近红外光谱 | 1D CNN, LDA, Naive Bayes, KNN, SVM | 脑信号数据 | 14名健康受试者加上两个公开数据集 | NA | 一维卷积神经网络 | 准确率, 精确率, 召回率, F1分数 | CPU时间和内存使用量评估 |
14154 | 2025-10-07 |
Predicting the risk of ischemic stroke in patients with atrial fibrillation using heterogeneous drug-protein-disease network-based deep learning
2025-Jun, APL bioengineering
IF:6.6Q1
DOI:10.1063/5.0242570
PMID:40191603
|
研究论文 | 开发了一种基于异质药物-蛋白-疾病网络的可解释深度学习模型ABioSPath,用于预测房颤患者的缺血性卒中风险 | 首次将药物-蛋白-疾病通路与真实世界临床数据整合,通过异质多层网络识别药物作用机制和共病传播 | 仅使用香港地区医院数据,缺乏外部验证 | 预测房颤患者一年内发生缺血性卒中的风险 | 房颤患者 | 机器学习 | 心血管疾病 | 深度学习,异质网络分析 | 深度学习 | 电子健康记录 | 7859名房颤患者 | NA | ABioSPath | AUROC, 阳性预测值, 阴性预测值, 灵敏度, 特异度, 平均精确率, Brier分数 | NA |
14155 | 2025-10-07 |
VGX: VGG19-Based Gradient Explainer Interpretable Architecture for Brain Tumor Detection in Microscopy Magnetic Resonance Imaging (MMRI)
2025-May, Microscopy research and technique
IF:2.0Q3
DOI:10.1002/jemt.24809
PMID:39825619
|
研究论文 | 提出一种基于VGG19的梯度解释器可解释架构,用于显微磁共振成像中的脑肿瘤检测 | 结合改进的VGG19模型与可解释AI技术,使用梯度解释器来解释分类结果 | 尽管准确率高,但结果解释性仍存疑问 | 开发自动微脑肿瘤识别方法 | 脑肿瘤组织与正常脑组织 | 计算机视觉 | 脑肿瘤 | 显微磁共振成像(MMRI) | CNN | 图像 | 包含不同肿瘤大小和类型的多样化数据集 | NA | VGG16,VGG19 | 准确率 | NA |
14156 | 2025-10-07 |
A pretrained transformer model for decoding individual glucose dynamics from continuous glucose monitoring data
2025-May, National science review
IF:16.3Q1
DOI:10.1093/nsr/nwaf039
PMID:40191259
|
研究论文 | 开发基于注意力机制的深度学习模型CGMformer,通过连续血糖监测数据解码个体血糖动态 | 首次将预训练Transformer架构应用于连续血糖监测数据,能够学习个体内在代谢状态表征 | 未明确说明模型在特定人群中的泛化能力限制 | 开发用于糖尿病管理和早期预警的血糖动态分析模型 | 连续血糖监测数据和糖尿病患者 | 机器学习 | 糖尿病 | 连续血糖监测技术 | Transformer | 时间序列数据 | 五个外部数据集的不同人群和代谢状态数据 | NA | Transformer | MAE, AUROC, Pearson相关系数 | NA |
14157 | 2025-10-07 |
Multitask Deep Learning Models of Combined Industrial Absorption, Distribution, Metabolism, and Excretion Datasets to Improve Generalization
2025-Apr-07, Molecular pharmaceutics
IF:4.5Q1
|
研究论文 | 本研究通过整合Genentech和罗氏公司的ADME数据集,开发多任务深度学习模型以提升药物代谢性质预测的泛化能力 | 首次将两家大型制药公司的ADME数据集进行整合分析,并采用跨站点多任务神经网络架构,探索化学空间扩展对模型性能的影响 | 两个站点的实验方法存在差异,数据不能直接聚合,需要作为独立任务分别建模 | 优化药物发现过程中化合物的吸收、分布、代谢和排泄(ADME)特性预测 | 来自Genentech和罗氏公司的ADME数据集,包含11个测定终点的超过100万次测量 | 机器学习 | NA | ADME测定 | 神经网络 | 化学化合物数据 | 超过100万次测量,涵盖11个测定终点 | NA | 多任务神经网络 | 聚类测试集、时间测试集、外部测试集评估 | NA |
14158 | 2025-10-07 |
Decomposing the effect of normal aging and Alzheimer's disease in brain morphological changes via learned aging templates
2025-Apr-07, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-96234-w
PMID:40189702
|
研究论文 | 本文提出两种评分方法分别量化大脑正常衰老和阿尔茨海默病特异性变化对脑形态的影响 | 通过深度学习生成年龄模板,首次将脑萎缩分解为正常衰老和疾病特异性两个独立成分进行量化 | 研究基于单一数据集(OASIS-3),需要更多外部验证 | 分离并量化正常衰老和阿尔茨海默病对大脑形态变化的独立影响 | 认知正常个体和阿尔茨海默病患者的大脑形态变化 | 医学影像分析 | 阿尔茨海默病 | T1加权磁共振成像 | 生成式深度学习模型, 深度学习配准模型 | 脑部MRI图像 | 1,014例T1加权MRI扫描(326例认知正常, 688例阿尔茨海默病) | NA | NA | 临床痴呆评定量表(CDR)相关性分析 | NA |
14159 | 2025-10-07 |
Optimal selection of a probabilistic machine learning model for predicting high run chase outcomes in T-20 international cricket
2025-Apr-07, Journal of sports sciences
IF:2.3Q2
DOI:10.1080/02640414.2025.2488157
PMID:40192186
|
研究论文 | 本研究评估多种概率机器学习模型在T20国际板球比赛中预测高跑分追逐结果的效果 | 首次系统比较六种贝叶斯概率模型在板球预测中的表现,并确定CAWNB为最优模型 | 研究仅限于T20国际板球格式,未测试其他板球格式或实时数据适应 | 开发可靠的板球高跑分追逐预测模型 | T20国际板球比赛数据 | 机器学习 | NA | 蒙特卡洛模拟,非参数统计检验 | Naïve Bayes, Bayesian Network, Bayesian Regularized Neural Network, Hidden Naïve Bayes, Correlation Feature-Based Filter Weighting Naïve Bayes, Class-Specific Attribute Weighted Naïve Bayes | 板球比赛数据(包括团队排名、比赛条件、场地行为和局分) | NA | NA | NA | 准确率,精确率,灵敏度,特异度,F1分数,AUC-ROC,熵 | NA |
14160 | 2025-04-08 |
In perspective: Development and External Validation of a Deep Learning Electrocardiogram Model For Risk Stratification of Coronary Revascularization Need in the Emergency Department
2025-Apr-07, European heart journal. Acute cardiovascular care
DOI:10.1093/ehjacc/zuaf058
PMID:40192550
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |