本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14201 | 2024-08-05 |
A Transformer Approach for Cognitive Impairment Classification and Prediction
2024 Apr-Jun 01, Alzheimer disease and associated disorders
DOI:10.1097/WAD.0000000000000619
PMID:38757560
|
研究论文 | 本研究探讨了一种变压器方法用于阿尔茨海默病和轻度认知障碍的分类和预测 | 使用无特征选择的掩蔽变压器编码器处理稀疏输入数据进行预测 | 模型对输入特征的敏感性分析结果未详细讨论 | 旨在非侵入性地早期分类和预测阿尔茨海默病和轻度认知障碍 | 使用国家阿尔茨海默协调中心的数据集进行样本分类和未来诊断预测 | 机器学习 | 阿尔茨海默病 | 变压器 | 掩蔽变压器编码器 | 特征数据 | 涉及的样本数量未具体说明 |
14202 | 2024-08-05 |
Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer's disease in patients with mild cognitive symptoms
2024-03-19, Alzheimer's research & therapy
DOI:10.1186/s13195-024-01428-5
PMID:38504336
|
研究论文 | 本研究比较了预定义的方法与深度学习在预测阿尔茨海默病患者脑萎缩模式的表现 | 该研究首次评估了使用深度学习模型与传统方法相比,使用整个脑图像来提高MRI预测阿尔茨海默病相关认知衰退的能力 | 深度学习模型在预测阿尔茨海默病进展方面的表现未优于基于预定义脑区的回归模型 | 研究阿尔茨海默病早期认知衰退的预测方法 | 332名有主观认知衰退或轻度认知障碍的个体 | 数字病理学 | 阿尔茨海默病 | MRI | 深度学习模型 | 结构性脑影像 | 332名具有主观认知衰退/轻度认知障碍的个体 |
14203 | 2024-08-05 |
Deep convolutional neural network for differentiating between sarcoidosis and lymphoma based on [18F]FDG maximum-intensity projection images
2024-Jan, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09937-x
PMID:37535157
|
研究论文 | 本文比较了未治疗的肉芽肿病和恶性淋巴瘤的 [18F]FDG PET/CT 查找。 | 本研究使用最大强度投影(MIP)图像开发的卷积神经网络(CNN)模型能够高效区分肉芽肿病与恶性淋巴瘤。 | 本研究基于回顾性数据,可能存在偏倚,且样本量相对较小。 | 研究旨在通过FDG累积差异区分肉芽肿病和恶性淋巴瘤。 | 研究对象为新诊断的肉芽肿病和恶性淋巴瘤患者。 | 机器学习 | 淋巴瘤 | [18F]FDG PET/CT | CNN | 图像 | 共纳入118名患者,包含56名肉芽肿患者和62名恶性淋巴瘤患者 |
14204 | 2024-08-05 |
Corn leaf disease: insightful diagnosis using VGG16 empowered by explainable AI
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1402835
PMID:38988642
|
研究论文 | 这项研究利用VGG16深度学习模型对玉米叶片进行分类,以识别疾病 | 该研究通过引入层次相关传播(LRP)增强模型的可解释性,生成输入图像的直观热图 | 研究中未提及对不同环境和气候条件下结果的适用性分析 | 旨在提高玉米叶片疾病的早期检测和分类精度 | 研究对象为健康、枯萎、灰斑和普通锈病四种类型的玉米叶片 | 计算机视觉 | NA | 深度学习,VGG16,层次相关传播(LRP) | VGG16 | 图像 | NA |
14205 | 2024-08-05 |
HAPI: An efficient Hybrid Feature Engineering-based Approach for Propaganda Identification in social media
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0302583
PMID:38985703
|
研究论文 | 本研究介绍了一种基于混合特征工程的宣传识别方法HAPI,用于检测社交媒体上的宣传内容 | 该研究结合传统特征工程方法与机器学习技术,提出了一种新的混合特征选择技术,能有效提高宣传检测的准确率 | 该研究的宣传检测范围主要限于文本数据,未涵盖多模态数据的处理 | 研究目的在于开发一种系统用于社交媒体上文本内容的宣传识别 | 研究对象为从Twitter收集的推文,进行分类为宣传和非宣传 | 自然语言处理 | NA | 机器学习 | 多项式朴素贝叶斯、支持向量机、决策树、逻辑回归 | 文本 | 使用了40个相关特征进行训练和评估 |
14206 | 2024-08-05 |
Deep learning-based assessment of CT markers of sarcopenia and myosteatosis for outcome assessment in patients with advanced pancreatic cancer after high-intensity focused ultrasound treatment
2024-Jan, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09974-6
PMID:37572195
|
研究论文 | 本文评估了CT基础的肌肉萎缩和肌肉脂肪含量标志物在高强度聚焦超声治疗的晚期胰腺癌患者中的预后价值 | 研究揭示了肌肉脂肪含量标志物在临床评分之外对患者生存期的附加风险评估的更大作用 | 本研究为回顾性研究,可能存在时间和样本选择的偏差 | 评估CT基础的肌肉萎缩和肌肉脂肪含量标志物对晚期胰腺癌患者生存的预后价值 | 142名接受高强度聚焦超声治疗的晚期胰腺癌患者 | 数字病理学 | 胰腺癌 | CT扫描 | Cox比例风险模型 | 影像 | 142名患者的回顾性数据 |
14207 | 2024-08-05 |
ML-driven segmentation of microvascular features during histological examination of tissue-engineered vascular grafts
2024, Frontiers in bioengineering and biotechnology
IF:4.3Q2
DOI:10.3389/fbioe.2024.1411680
PMID:38988863
|
研究论文 | 本研究展示了机器学习驱动的分割方法在组织工程血管移植物组织学分析中的潜力 | 创建了一个独特的数据集并优化了深度神经网络超参数,开发并验证了一个集成模型 | 未提及具体的局限性 | 研究机器学习工具在组织工程血管移植物的组织学分析中的应用 | 采用104个组织工程血管移植物的全切片图像进行分析 | 数字病理学 | NA | 深度学习 | U-Net, LinkNet, FPN, PSPNet, DeepLabV3, MA-Net | 图像 | 104 张全切片图像和 1401 个手动注释的区域 |
14208 | 2024-08-05 |
Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy
2024-Jan, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10033-3
PMID:37532899
|
研究论文 | 该研究评估了低剂量双能源CT与标准剂量单能源CT在肝脏转移瘤检测中的影像质量和效果 | 本研究创新点在于利用深度学习图像重建技术实现低剂量双能源CT在保持影像质量的同时减少辐射剂量34% | 该研究的样本数量相对较小,且仅在特定条件下进行评估,可能影响结果的广泛适用性 | 研究目的在于比较低剂量双能源CT与标准剂量单能源CT在肝脏转移瘤检测中的表现 | 参与者为80名,分别接受低剂量双能源CT和标准剂量单能源CT扫描 | 医学影像学 | 肝癌 | 深度学习图像重建 | NA | 影像 | 80名参与者,分别为40名接受低剂量双能源CT和40名接受标准剂量单能源CT |
14209 | 2024-08-05 |
Drug repurposing for obsessive-compulsive disorder using deep learning-based binding affinity prediction models
2024, AIMS neuroscience
IF:3.1Q2
DOI:10.3934/Neuroscience.2024013
PMID:38988885
|
研究论文 | 本研究使用基于深度学习的方法构建了预测与强迫症相关的生物靶点相互作用的分子模型 | 创新点在于利用深度学习方法构建了多模型组合,并在大型药物数据库上进行外部验证 | 研究可能受限于模型的选择和验证样本的多样性 | 研究旨在发现针对强迫症的药物再利用 | 研究对象为与强迫症相关的分子及其与生物靶点的相互作用 | 机器学习 | 强迫症 | 深度学习 | 集成模型 | 分子数据 | 包含多个高分子的综合模型验证和案例研究 |
14210 | 2024-08-05 |
Making MS Omics Data ML-Ready: SpeCollate Protocols
2024, Methods in molecular biology (Clifton, N.J.)
DOI:10.1007/978-1-0716-4007-4_9
PMID:38995540
|
研究论文 | 本文提供了将质谱(MS)数据转化为机器学习(ML)训练和应用的全面指南 | 提出了SpeCollate深度学习模型,并展示了其在肽谱匹配中的应用 | 未提及具体的样本尺寸和限度 | 旨在为质谱分析提供数据变换、推理和机器学习模型应用的全面概述 | 质谱数据及其在肽谱匹配中的应用 | 机器学习 | NA | 质谱 | 深度学习模型(SpeCollate) | 质谱数据 | NA |
14211 | 2024-08-05 |
A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma
2024-Jan, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09944-y
PMID:37553486
|
研究论文 | 本文开发了一种基于MRI的深度学习方法,以预测IDH突变星形胶质瘤中的CDKN2A/B同源缺失状态 | 提出了一种结合注意力机制的深度学习网络FN-Net,优于以往的ResNet网络 | 没有提及潜在的局限性 | 研究旨在提高预测IDH突变星形胶质瘤中CDKN2A/B同源缺失状态的准确性 | 234名参与者的多参数脑MRI数据及相应的基因组信息 | 数字病理学 | 脑癌 | MRI | ConvNeXt | 图像 | 234名参与者(111例阳性,123例阴性) |
14212 | 2024-08-05 |
An enhanced pattern detection and segmentation of brain tumors in MRI images using deep learning technique
2024, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2024.1418280
PMID:38988988
|
研究论文 | 该文章提出了一种改进的深度学习方法,用于在MRI图像中检测和分割脑肿瘤 | 本研究使用二进制卷积神经网络(BCNN)算法,成功扩展了肿瘤分割能力,从仅分割四种类型提升到十种主要脑肿瘤类型 | NA | 提高脑肿瘤的早期检测和分割精度 | 通过MRI图像对脑肿瘤进行识别、分类和分级 | 计算机视觉 | NA | 深度学习 | 二进制卷积神经网络(BCNN) | 图像 | 6600张脑MRI图像 |
14213 | 2024-08-05 |
Advanced Techniques for MR Neuroimaging
2024, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
IF:2.5Q2
DOI:10.2463/mrms.e.2024-1000
PMID:38945942
|
综述 | 本期特别刊物总结了MR神经成像的先进技术和应用 | 涉及多个领域的最新进展,如深度学习图像增强和放射组学 | 未提供具体的研究数据或样本量信息 | 介绍MR神经成像领域的最新技术进展 | 九篇由专家撰写的综述文章 | 数字病理学 | 神经系统疾病 | 磁共振成像 | NA | 图像 | NA |
14214 | 2024-08-05 |
Deep learning-based scan range optimization can reduce radiation exposure in coronary CT angiography
2024-Jan, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-09971-9
PMID:37552254
|
研究论文 | 本研究旨在开发一个深度神经网络,以优化CT定位器的扫描范围,从而减少患者辐射剂量 | 采用深度学习自动划定CT扫描范围,显著提高了扫描准确性,并减少了辐射暴露 | 可能存在训练数据的代表性问题,外部验证的样本来自单一医院 | 旨在降低冠状动脉CT血管造影中患者的辐射剂量 | 涉及1507个冠状动脉CT定位器的回顾性训练队列 | 数字病理学 | 心血管疾病 | Monte Carlo仿真 | 深度神经网络 | 影像 | 1507个CT定位器,内部队列233个,外部队列298个 |
14215 | 2024-08-07 |
Reducing radiation dose in routine CT scans: an AI-driven approach with deep learning-based dual-energy CT reconstruction
2024-Jan, European radiology
IF:4.7Q1
DOI:10.1007/s00330-023-10066-8
PMID:37540322
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
14216 | 2024-08-05 |
Human-in-the-Loop Optimization for Deep Stimulus Encoding in Visual Prostheses
2023-Dec, Advances in neural information processing systems
PMID:38984104
|
研究论文 | 本研究提出了一种结合深度学习和贝叶斯优化的新方法,用于视觉假体中的刺激编码优化。 | 提出了一种新的深度编码网络来为个体患者生成最佳刺激,并采用偏好贝叶斯优化策略进行个性化参数优化 | 尽管方法有效,但存在对高维刺激的处理能力不足的问题 | 旨在提高视觉假体患者的感知体验 | 研究视觉假体患者的个性化刺激编码 | 数字病理学 | NA | 深度学习,贝叶斯优化 | 深度编码网络 | 刺激参数数据 | NA |
14217 | 2024-08-05 |
Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer's disease in patients with mild cognitive symptoms
2023-Nov-08, Research square
DOI:10.21203/rs.3.rs-3569391/v1
PMID:37986841
|
研究论文 | 该文章比较了预定义方法与深度学习方法在提取脑萎缩模式以预测阿尔茨海默病相关认知衰退中的表现 | 探讨了使用整个脑图像的深度学习模型是否能提高MRI预测性能 | 深度学习模型未显著改善阿尔茨海默病临床疾病进展的预测 | 预测具有主观认知衰退或轻度认知障碍的个体未来的阿尔茨海默病相关认知衰退 | 来自瑞典BioFINDER-1研究的332名主观认知衰退/轻度认知障碍个体 | 数字病理学 | 阿尔茨海默病 | 磁共振成像 (MRI) | 深度学习模型 | 图像 | 332名患者 |
14218 | 2024-08-05 |
HLA-II immunopeptidome profiling and deep learning reveal features of antigenicity to inform antigen discovery
2023-07-11, Immunity
IF:25.5Q1
DOI:10.1016/j.immuni.2023.05.009
PMID:37301199
|
研究论文 | 本研究通过单等位基因免疫肽组学分析HLA-II结合体,结合深度学习,揭示抗原特征以辅助抗原发现 | 创新性地开发了基于深度学习的模型CAPTAn,用于预测与HLA-II亲和力相关的肽抗原 | 目前对影响抗原呈递的因素理解仍不完全,且在配体数据库中多样性等位基因的代表性不足 | 研究HLA-II抗原结合体的特征,以提供新的抗原发现工具 | 358,024个HLA-II结合肽,特别关注HLA-DQ和HLA-DP | 数字病理学 | NA | 单等位基因免疫肽组学 | 深度学习模型(CAPTAn) | PEPTIDES | NA |
14219 | 2024-08-05 |
In-silico generation of high-dimensional immune response data in patients using a deep neural network
2023-05, Cytometry. Part A : the journal of the International Society for Analytical Cytology
DOI:10.1002/cyto.a.24709
PMID:36507780
|
研究论文 | 本文提出了一种深度学习模型,用于在高维空间中生成患者的免疫反应数据 | 通过新的最佳时序细胞匹配和过完备自编码器管道,使用少量患者的数据预测整个患者的免疫反应 | 受限于仅使用小型患者样本,可能影响模型的普遍适用性 | 旨在理解免疫系统在各类疾病中的作用 | 分析手术前后1.08百万个细胞的数据 | 机器学习 | NA | 深度学习 | 自编码器 | 细胞数据 | 涉及1.08百万个细胞 |
14220 | 2024-08-07 |
BIONIC: biological network integration using convolutions
2022-10, Nature methods
IF:36.1Q1
DOI:10.1038/s41592-022-01616-x
PMID:36192463
|
研究论文 | 本文介绍了一种基于深度学习的生物网络集成算法BIONIC,该算法利用图卷积网络框架,通过结合和自动加权输入信息,以获得更准确和全面的生物学表示 | BIONIC算法能够学习包含更多功能信息的特征,相比现有方法有显著改进 | NA | 开发一种新的生物网络集成算法,以提高对生物学功能的理解和预测 | 生物网络的集成和功能信息的学习 | 机器学习 | NA | 图卷积网络 | CNN | 网络数据 | 适用于大规模的人类基因组网络集成 |