深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 29093 篇文献,本页显示第 14221 - 14240 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
14221 2025-01-19
MultiChem: predicting chemical properties using multi-view graph attention network
2025-Jan-16, BioData mining IF:4.0Q1
研究论文 本文介绍了一种名为MultiChem的多视图图注意力网络模型,用于预测化学化合物的分子特性 MultiChem模型通过结合局部和全局结构特征,利用图注意力层和多头注意力层来有效捕捉化学化合物的关键结构信息,相比现有方法在AUROC和RMSE上分别有3%和7%的提升 未明确提及具体局限性 开发一种高效且成本效益高的计算方法,以预测化学化合物的分子特性,从而加速药物发现过程 化学化合物的分子特性 机器学习 NA 多视图学习模型 图注意力网络(GAT) 分子结构数据 九个MoleculeNet数据集
14222 2025-01-19
Evaluating the feasibility of AI-predicted bpMRI image features for predicting prostate cancer aggressiveness: a multi-center study
2025-Jan-15, Insights into imaging IF:4.1Q1
研究论文 本研究评估了利用人工智能预测的双参数MRI图像特征预测前列腺癌侵袭性的可行性 使用深度学习放射组学模型从bpMRI图像中提取特征,预测前列腺癌的侵袭性,并展示了良好的外部验证能力 研究未提及模型在不同种族或地区患者中的适用性 评估AI预测的bpMRI图像特征在前列腺癌侵袭性预测中的可行性 878名前列腺癌患者 数字病理学 前列腺癌 双参数MRI (bpMRI) 深度学习放射组学模型 图像 878名前列腺癌患者,来自4家医院
14223 2025-01-19
Pervasive glacier retreats across Svalbard from 1985 to 2023
2025-Jan-15, Nature communications IF:14.7Q1
研究论文 本文利用深度学习生成的1985年至2023年间149个海洋终止冰川的124919个冰崩前沿位置数据,揭示了斯瓦尔巴群岛非涌浪冰川在过去38年中的普遍冰崩前沿退缩现象 首次使用深度学习技术大规模分析斯瓦尔巴群岛海洋终止冰川的冰崩前沿退缩,揭示了季节性周期和区域海洋变暖对冰崩前沿变化的显著影响 研究主要依赖于遥感数据和深度学习模型,可能忽略了局部地形和冰川内部动力学的复杂性 研究目的是理解和预测海洋终止冰川的冰崩前沿退缩行为,特别是季节性变化和年际变化对冰川质量损失的影响 斯瓦尔巴群岛的149个海洋终止冰川 地球科学 NA 深度学习 NA 遥感数据 149个海洋终止冰川的124919个冰崩前沿位置数据
14224 2025-01-19
Artificial Intelligence in Computer-Aided Drug Design (CADD) Tools for the Finding of Potent Biologically Active Small Molecules: Traditional to Modern Approach
2025-Jan-15, Combinatorial chemistry & high throughput screening IF:1.6Q3
综述 本文探讨了人工智能在计算机辅助药物设计(CADD)中的应用,特别是小分子药物的发现 本文强调了人工智能、生物信息学和数据科学在加速药物发现、降低成本和减少动物实验需求方面的作用,并讨论了深度学习在配体性质和靶标活性预测中的进展 本文未具体提及研究中使用的数据集或样本量,也未详细讨论AI模型的具体局限性 研究目的是探讨人工智能在药物发现和开发中的作用,特别是如何加速高效、靶向特异性药物的发现 研究对象是小分子药物及其与生物分子靶标的相互作用 药物发现 NA 结构基于虚拟筛选(SBVS)、深度学习(DL) 深度学习(DL) 分子性质数据、靶标结合数据、3D结构数据 NA
14225 2025-01-19
BioStructNet: Structure-Based Network with Transfer Learning for Predicting Biocatalyst Functions
2025-Jan-14, Journal of chemical theory and computation IF:5.7Q1
研究论文 本文介绍了BioStructNet,一种基于结构的深度学习网络,用于预测生物催化剂功能,通过整合蛋白质和配体结构数据来捕捉酶-底物相互作用的复杂性 BioStructNet结合了蛋白质和配体结构数据,并采用迁移学习优化小数据集的预测精度,提高了生物催化活性预测的准确性 特定酶功能(如转化效率和立体选择性)的数据可用性有限,影响了预测精度 开发一种深度学习模型,用于预测生物催化剂的功能,以加速工业用功能酶的发现 酶-底物相互作用 机器学习 NA 深度学习,迁移学习 深度学习网络 蛋白质和配体结构数据 使用CalB数据集进行案例研究
14226 2025-01-19
DANTE-CAIPI Accelerated Contrast-Enhanced 3D T1: Deep Learning-Based Image Quality Improvement for Vessel Wall MRI
2025-Jan-08, AJNR. American journal of neuroradiology
研究论文 本文探讨了深度学习去噪算法在加速、血液抑制后的颅内血管壁MRI(IVW)中的应用,以提高图像质量并缩短扫描时间 首次将深度学习去噪算法应用于DANTE-CAIPI-SPACE加速和血液抑制的IVW,显著减少了动脉和静脉流动伪影,并在较短的扫描时间内提高了信噪比(SNR) 研究样本量较小(64名患者),且未进行长期随访以评估该技术的临床效果 提高加速和血液抑制后的颅内血管壁MRI(IVW)的图像质量,减少伪影并提高信噪比(SNR) 64名连续接受IVW扫描的患者 医学影像 NA 深度学习去噪算法 深度卷积网络(DCNN) MRI图像 64名患者
14227 2025-01-19
Deep Learning-Based Super-Resolution Reconstruction on Undersampled Brain Diffusion-Weighted MRI for Infarction Stroke: A Comparison to Conventional Iterative Reconstruction
2025-Jan-08, AJNR. American journal of neuroradiology
研究论文 本研究比较了基于深度学习的超分辨率重建与传统压缩感知重建在脑部扩散加权磁共振成像(DWI)中对梗死性卒中的图像质量和诊断信心的影响 首次将深度学习技术应用于脑部DWI的超分辨率重建,以提高梗死性卒中的诊断信心 研究为回顾性设计,样本量相对较小(114例),且未涉及其他类型的卒中 评估深度学习超分辨率重建在脑部DWI中对梗死性卒中的图像质量和诊断信心的提升效果 114名接受脑部DWI检查的参与者 医学影像 梗死性卒中 深度学习超分辨率重建 深度学习模型 磁共振成像(MRI)图像 114名参与者
14228 2025-01-19
Evaluating CNN Architectures for the Automated Detection and Grading of Modic Changes in MRI: A Comparative Study
2025-Jan, Orthopaedic surgery IF:1.8Q2
研究论文 本研究开发并评估了卷积神经网络(CNN)在检测和分级Modic变化(MCs)中的性能,并与初级医生的表现进行了比较 首次使用CNN自动检测和分级Modic变化,并验证了AI辅助对初级医生诊断一致性的提升 样本量相对较小,且数据来源仅限于特定品牌的MRI扫描仪 开发并验证CNN在MRI图像中自动检测和分级Modic变化的性能 139名患者的MRI图像 计算机视觉 脊柱疾病 MRI CNN, YOLOv8, YOLOv5 图像 139名患者的MRI图像(109名来自Philips扫描仪,30名来自Philips和United Imaging扫描仪)
14229 2025-01-19
Intelligent Diagnosis of Hypopigmented Dermatoses and Intelligent Evaluation of Vitiligo Severity on the Basis of Deep Learning
2024-Dec, Dermatology and therapy IF:3.5Q1
研究论文 本研究提出了一种基于深度学习的智能诊断模型,用于分类诊断色素减退性皮肤病(HD)和评估白癜风严重程度 通过将squeeze-and-excitation (SE)模块与候选模型结合,构建了优化的诊断模型,并提出了一种客观的严重程度评估指标,结合分割模型形成了严重程度评估模型 研究中使用的数据集主要来自4744名患者,可能无法涵盖所有类型的HD和白癜风病例 开发一种客观、准确且方便的智能诊断和评估方法,用于色素减退性皮肤病和白癜风的严重程度评估 色素减退性皮肤病(HD)和白癜风患者 计算机视觉 皮肤病 深度学习 SE_ResNet-18, HR-Net 图像 4744名患者的11483张图像
14230 2025-01-19
Three-dimensional convolutional neural network for leak detection and localization in smart water distribution systems
2024-Dec-01, Water research X IF:7.2Q1
研究论文 本文提出了一种三维卷积神经网络(3D CNN)深度学习模型,用于智能水分配系统中的泄漏检测和定位 首次将3D CNN应用于水分配网络的泄漏检测和定位,能够处理压力和时间的空间分布信息 深度学习模型的适应性可能受限,且受水力模拟模型影响较大,网络变化时需要重新训练,可能耗时且难以处理多种故障情况 研究智能水分配系统中的泄漏检测和定位方法 水分配网络(WDNs)中的泄漏 机器学习 NA 深度学习 3D CNN 压力数据 使用奥斯汀的一个真实水分配网络进行测试,生成了150毫米管道中3升/秒的泄漏模拟数据
14231 2024-11-23
Corrigendum to: Deep learning(s) in gaming disorder through the user-avatar bond: A longitudinal study using machine learning
2024-Nov-22, Journal of behavioral addictions IF:6.6Q1
NA NA NA NA NA NA NA NA NA NA NA NA
14232 2025-01-19
NON-CARTESIAN SELF-SUPERVISED PHYSICS-DRIVEN DEEP LEARNING RECONSTRUCTION FOR HIGHLY-ACCELERATED MULTI-ECHO SPIRAL FMRI
2024-May, Proceedings. IEEE International Symposium on Biomedical Imaging
研究论文 本文提出了一种基于物理驱动的深度学习(PD-DL)重建方法,用于加速多回波螺旋fMRI的10倍重建 本文的创新点在于将自监督学习算法修改并应用于非笛卡尔轨迹的优化训练,以实现高时空分辨率的多回波螺旋fMRI重建 NA 研究目的是通过深度学习技术加速多回波螺旋fMRI的重建,以提高时空分辨率 多回波螺旋fMRI数据 医学影像处理 NA 深度学习 PD-DL网络 fMRI图像数据 NA
14233 2025-01-19
Mapping cell-to-tissue graphs across human placenta histology whole slide images using deep learning with HAPPY
2024-Mar-28, Nature communications IF:14.7Q1
研究论文 本文介绍了一种名为HAPPY的深度学习分层方法,用于量化胎盘组织学全切片图像中细胞和微解剖组织结构的变异性 HAPPY方法不同于基于补丁的特征或分割方法,它遵循可解释的生物层次结构,在全切片图像中以单细胞分辨率表示细胞和组织中的细胞群落 NA 开发一种深度学习方法来准确评估胎盘病理学,以管理母婴健康 胎盘组织学全切片图像 数字病理学 NA 深度学习 NA 图像 健康足月胎盘和具有临床显著胎盘梗死的胎盘
14234 2025-01-19
Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data
2024-Jan-26, Nature communications IF:14.7Q1
研究论文 本文介绍了一种名为NEUROeSTIMator的深度学习模型,用于从单细胞和空间转录组数据中量化神经元激活 NEUROeSTIMator模型能够整合转录组信号来估计神经元激活,且与Patch-seq电生理特征相关联,对物种、细胞类型和脑区差异具有鲁棒性 NA 开发一种能够准确检测神经元激活的工具,以研究神经元活动依赖性转录 神经元激活 机器学习 NA 单细胞RNA测序(scRNAseq) 深度学习模型 转录组数据 已发表研究中的单细胞活动诱导基因表达数据,以及雄性小鼠不同脑区的空间转录组数据
14235 2025-01-18
Brief Review and Primer of Key Terminology for Artificial Intelligence and Machine Learning in Hypertension
2025-Jan, Hypertension (Dallas, Tex. : 1979)
review 本文简要回顾并介绍了人工智能和机器学习在高血压领域的关键术语 本文提供了人工智能和机器学习在高血压管理中的应用概述,特别是通过远程患者监测和数字疗法来改善诊断和治疗 本文主要是一个术语介绍和综述,未涉及具体的研究数据或实验结果 介绍人工智能和机器学习在高血压管理中的应用及其潜力 高血压患者及其相关数据 machine learning cardiovascular disease NA NA structured or unstructured data sets NA
14236 2025-01-18
Predicting therapeutic response to neoadjuvant immunotherapy based on an integration model in resectable stage IIIA (N2) non-small cell lung cancer
2025-Jan, The Journal of thoracic and cardiovascular surgery IF:4.9Q1
研究论文 本研究探讨了基于血液的肿瘤突变负荷(bTMB)和深度学习模型在预测可切除IIIA期(N2)非小细胞肺癌新辅助化疗免疫治疗中的主要病理反应(MPR)和生存率的有效性 开发了一个结合计算机断层扫描(CT)的深度学习评分、bTMB和临床因素的综合模型,用于预测新辅助化疗免疫治疗的肿瘤反应 样本量较小(45名患者),且基线循环肿瘤DNA(ctDNA)状态与病理反应和生存率无显著关联 预测可切除IIIA期(N2)非小细胞肺癌患者对新辅助化疗免疫治疗的反应 45名接受新辅助化疗免疫治疗的IIIA期(N2)非小细胞肺癌患者 数字病理学 肺癌 深度学习模型,血液肿瘤突变负荷(bTMB)检测 深度学习模型 血液样本,CT图像 45名IIIA期(N2)非小细胞肺癌患者
14237 2025-01-18
TransEBUS: The interpretation of endobronchial ultrasound image using hybrid transformer for differentiating malignant and benign mediastinal lesions
2025-Jan, Journal of the Formosan Medical Association = Taiwan yi zhi
研究论文 本研究旨在建立一个深度学习自动辅助诊断系统,用于区分内镜超声(EBUS)图像中纵隔病变的良恶性 提出了基于混合Transformer的深度学习架构TransEBUS,能够从未充分数据中提取时空特征,并设计了一个双流模块来整合EBUS的三种不同成像模式信息 数据集规模可能较小,模型在更大数据集上的表现尚需验证 建立自动辅助诊断系统以区分EBUS图像中纵隔病变的良恶性 内镜超声(EBUS)图像中的纵隔病变 计算机视觉 纵隔病变 深度学习 混合Transformer(TransEBUS) 视频(EBUS图像) 未明确说明样本数量
14238 2025-01-16
Deep learning radiomics analysis for prediction of survival in patients with unresectable gastric cancer receiving immunotherapy
2025-Jun, European journal of radiology open IF:1.8Q3
研究论文 本研究旨在通过结合影像学和临床病理变量,利用深度学习放射组学分析预测接受免疫治疗的不可切除胃癌患者的生存期 采用多模态集成方法,结合CT影像数据和临床病理变量,构建深度学习模型预测患者生存期,并构建了列线图进行验证 样本量相对较小,且仅在中国人民解放军总医院的两个医疗中心进行,可能限制了结果的普适性 预测接受免疫治疗的不可切除胃癌患者的生存期 不可切除胃癌患者 数字病理 胃癌 深度学习 多模态集成模型 CT影像数据和临床病理数据 训练队列79名患者,外部验证队列97名患者
14239 2025-01-16
Automated Detection of Filamentous Fungal Keratitis on Whole Slide Images of Potassium Hydroxide Smears with Multiple Instance Learning
2025 Mar-Apr, Ophthalmology science IF:3.2Q1
研究论文 本研究评估了深度学习框架双流多实例学习(DSMIL)在自动化分析氢氧化钾(KOH)涂片全片成像(WSI)中的有效性,以快速准确检测真菌感染 使用双流多实例学习(DSMIL)处理高分辨率WSI数据,自动检测真菌感染,并通过热图提供视觉解释 研究为回顾性观察研究,可能受限于样本选择和人类专家解释的一致性 自动化分析KOH涂片WSI,以快速准确检测真菌感染 568名疑似真菌性角膜炎患者的角膜刮片 数字病理学 真菌性角膜炎 双流多实例学习(DSMIL) DSMIL 图像 568名患者的角膜刮片
14240 2025-01-16
Frontal plane mechanical leg alignment estimation from knee x-rays using deep learning
2025-Mar, Osteoarthritis and cartilage open
研究论文 本研究开发并验证了一种深度学习模型,用于从膝关节前后位(AP)/后前位(PA)X光片中分类腿部对齐为“正常”或“错位”,使用可调的髋-膝-踝(HKA)角度阈值 该模型首次从膝关节X光片中分类腿部对齐,提供了一种实用的替代全腿X光片的方法 模型的性能依赖于X光片的质量和定位框架的使用 提高研究人群选择和患者管理的精确性 膝关节前后位(AP)/后前位(PA)X光片 计算机视觉 膝骨关节炎 深度学习 深度学习模型 图像 8878张数字X光片,包括6181张全腿X光片和2697张膝关节X光片
回到顶部