本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14221 | 2024-10-15 |
The Impact of Data on Structure-Based Binding Affinity Predictions Using Deep Neural Networks
2023-Nov-09, International journal of molecular sciences
IF:4.9Q2
DOI:10.3390/ijms242216120
PMID:38003312
|
研究论文 | 本文探讨了数据对基于结构的结合亲和力预测中深度神经网络性能的影响 | 识别了结合口袋大小作为影响模型性能的关键因素,并强调了使用尽可能多的数据进行训练的重要性 | 当前使用的测试集存在偏差,需要多种评估和基准测试来准确比较模型性能 | 研究数据参数对深度学习结合亲和力预测模型性能的影响 | 蛋白质-配体结合亲和力预测模型 | 机器学习 | NA | 深度学习 | 深度神经网络 | 结合口袋数据 | NA |
14222 | 2024-10-15 |
Lesion Detection in Optical Coherence Tomography with Transformer-Enhanced Detector
2023-Nov-07, Journal of imaging
IF:2.7Q3
DOI:10.3390/jimaging9110244
PMID:37998091
|
研究论文 | 本文提出了一种基于深度学习的区域检测框架,用于光学相干断层扫描(OCT)图像中的异常检测 | 该框架的核心是Transformer增强检测(TED),通过注意力门(AGs)确保聚焦于前景并识别和去除噪声伪影 | NA | 提高OCT图像中异常检测的准确性,辅助临床诊断 | OCT图像中的异常,包括牙科和CT图像中的病变 | 计算机视觉 | NA | 光学相干断层扫描(OCT) | Transformer | 图像 | 三个数据集,包括两个牙科数据集和一个CT数据集 |
14223 | 2024-10-15 |
AlphaFold Blindness to Topological Barriers Affects Its Ability to Correctly Predict Proteins' Topology
2023-Nov-07, Molecules (Basel, Switzerland)
DOI:10.3390/molecules28227462
PMID:38005184
|
研究论文 | 研究AlphaFold在预测蛋白质拓扑结构时未能考虑拓扑障碍的问题 | 揭示了AlphaFold在早期结构预测步骤中未能尊重蛋白质链之间的拓扑障碍,导致其预测的蛋白质拓扑结构存在误差 | AlphaFold在预测复杂复合结时存在局限性,未能正确反映蛋白质折叠过程中的拓扑障碍 | 探讨AlphaFold未能尊重拓扑障碍对其蛋白质链拓扑预测的影响 | 研究在自然折叠过程中形成相同结类型的蛋白质 | 机器学习 | NA | 深度学习 | AlphaFold | 蛋白质结构 | 涉及形成复杂复合结的蛋白质 |
14224 | 2024-10-15 |
Pixel Diffuser: Practical Interactive Medical Image Segmentation without Ground Truth
2023-Nov-02, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering10111280
PMID:38002404
|
研究论文 | 提出了一种无需医学分割真值数据的交互式医学图像分割方法PixelDiffuser | PixelDiffuser利用VGG19基础的自动编码器,仅需几次点击即可实现高质量分割,无需任何医学分割真值数据 | 未提及 | 开发一种无需真值数据的交互式医学图像分割方法 | 医学图像分割 | 计算机视觉 | NA | 自动编码器 | VGG19 | 图像 | 使用了BTCV数据集(包含各种器官的CT图像)和CHAOS数据集(包含肝脏、肾脏和脾脏的CT和MRI图像) |
14225 | 2024-10-15 |
Construction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related?
2023-Nov-02, Pharmaceuticals (Basel, Switzerland)
DOI:10.3390/ph16111555
PMID:38004422
|
研究论文 | 研究构建了渗出性年龄相关性黄斑变性(nAMD)的诊断和治疗分子网络,并探讨了其与脑神经退行性疾病的关联 | 采用多层网络分析、模糊逻辑模型和深度学习技术,识别了nAMD中的关键基因、miRNAs、lncRNAs、代谢物和SNPs,并发现这些与阿尔茨海默病、精神分裂症等神经退行性疾病有关 | 研究主要集中在分子网络的构建和关联分析,未涉及临床试验或实际治疗效果的验证 | 旨在识别nAMD发病机制中的关键分子,并探讨其与其他神经退行性疾病的关联 | nAMD中的蛋白质、miRNAs、lncRNAs、代谢物和SNPs | 机器学习 | 眼科疾病 | 多层网络分析、模糊逻辑模型、遗传算法 | LSTM网络 | 基因、miRNAs、lncRNAs、代谢物、SNPs | 30个关键基因、6个miRNAs、4个lncRNAs、3个关键代谢物、9个关键SNPs |
14226 | 2024-10-15 |
Choroidal Vessel and Stromal Volumetric Analysis After Photodynamic Therapy or Focal Laser for Central Serous Chorioretinopathy
2023-11-01, Translational vision science & technology
IF:2.6Q2
DOI:10.1167/tvst.12.11.26
PMID:37982766
|
研究论文 | 研究使用体积分析量化中心性浆液性脉络膜视网膜病变(CSCR)患者在接受光动力疗法(PDT)和局部激光光凝(PC)后脉络膜血管和基质的体积变化 | 首次使用深度学习方法进行三维光学相干断层扫描体积分析,量化PDT和PC治疗后脉络膜血管和基质的体积变化 | 这是一项回顾性比较研究,样本量较小,且仅包括CSCR患者 | 研究PDT和PC治疗对CSCR患者脉络膜血管和基质体积的影响 | 中心性浆液性脉络膜视网膜病变(CSCR)患者的脉络膜血管和基质 | NA | NA | 深度学习 | NA | 图像 | 58只眼(58名患者),其中33只眼接受PC治疗,25只眼接受PDT治疗 |
14227 | 2024-10-15 |
A deep learning-based dynamic model for predicting acute kidney injury risk severity in postoperative patients
2023-09, Surgery
IF:3.2Q1
DOI:10.1016/j.surg.2023.05.003
PMID:37316372
|
研究论文 | 本文开发了一种基于循环神经网络的动态模型,用于预测术后患者急性肾损伤的风险和严重程度 | 提出了一个基于循环神经网络的动态模型,能够更精细和动态地建模急性肾损伤状态,并实现更连续和准确的预测 | NA | 开发和验证一种新的模型,用于预测术后患者急性肾损伤的风险和严重程度 | 术后急性肾损伤的风险和严重程度 | 机器学习 | 肾脏疾病 | 循环神经网络 | RNN | 数值数据 | 42,906名手术患者 |
14228 | 2024-10-15 |
A bibliometric analysis of worldwide cancer research using machine learning methods
2023-Jun, Cancer innovation
DOI:10.1002/cai2.68
PMID:38089405
|
研究论文 | 本文通过文献计量分析方法,研究了2011年至2021年间使用机器学习方法进行癌症研究的全球趋势和热点 | 本文首次对全球范围内使用机器学习方法进行癌症研究的文献进行了全面的文献计量分析,揭示了该领域的研究热点和发展趋势 | 本文仅基于PubMed数据库中的6206篇文献进行分析,可能未能涵盖所有相关研究 | 分析全球范围内使用机器学习方法进行癌症研究的最新研究现状、主要研究主题、主题演变、研究合作和潜在研究方向 | 2011年至2021年间PubMed数据库中收集的6206篇关于使用机器学习方法进行癌症研究的文献 | 机器学习 | 癌症 | 文献计量分析 | Latent Dirichlet Allocation | 文本 | 6206篇文献 |
14229 | 2024-10-15 |
Semi-supervised Counting of Grape Berries in the Field Based on Density Mutual Exclusion
2023, Plant phenomics (Washington, D.C.)
DOI:10.34133/plantphenomics.0115
PMID:38033720
|
研究论文 | 提出了一种基于密度互斥的半监督葡萄浆果田间计数方法 | 引入基于密度互斥的辅助任务,利用未标记数据的空间分布模式,并设计了密度差异损失以增强特征表示 | 未提及 | 解决葡萄浆果计数中的遮挡问题,提高计数准确性 | 葡萄浆果 | 计算机视觉 | NA | 深度学习 | VGG16 | 图像 | 田间葡萄浆果数据集 |
14230 | 2024-10-15 |
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
2023, Frontiers in human neuroscience
IF:2.4Q2
DOI:10.3389/fnhum.2023.1280241
PMID:38034069
|
研究论文 | 本文提出了一种混合迁移学习策略,用于跨受试者的脑电图情绪识别 | 设计了一种名为Emo-DA的领域自适应学习模块,并结合少量样本微调网络(DFF-Net),显著提高了跨受试者脑电图情绪识别的准确性 | 未提及 | 解决跨受试者脑电图情绪识别中的性能下降问题 | 脑电图信号的情绪识别 | 机器学习 | NA | 迁移学习 | DFF-Net | 脑电图信号 | 在SEED数据集上达到93.37%的平均识别准确率,在SEED-IV数据集上达到82.32%的平均识别准确率 |
14231 | 2024-10-15 |
Artificial intelligence-driven systems engineering for next-generation plant-derived biopharmaceuticals
2023, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2023.1252166
PMID:38034587
|
综述 | 本文综述了人工智能驱动的系统工程在植物源下一代生物制药中的应用 | 本文提出通过人工智能和合成生物学工具优化植物系统中重组蛋白的表达,以提高产量和稳定性 | 本文未详细讨论具体的实验验证和实际应用案例 | 探讨人工智能在植物分子制药中的应用,以提高重组蛋白的产量和稳定性 | 植物系统中的重组生物制药,包括抗原、抗体、激素、细胞因子、单链可变片段和肽 | 生物技术 | NA | 人工智能算法 | 神经网络、支持向量机、线性回归、高斯过程和回归器集成 | 蛋白质结构数据 | NA |
14232 | 2024-10-15 |
Multi-level advances in databases related to systems pharmacology in traditional Chinese medicine: a 60-year review
2023, Frontiers in pharmacology
IF:4.4Q1
DOI:10.3389/fphar.2023.1289901
PMID:38035021
|
综述 | 本文回顾了60年来与中医药系统药理学相关的数据库的多层次进展 | 本文探讨了计算技术(包括深度学习和基础模型)在推动复杂系统探索和建模方面的新进展,预示着新时代的到来 | 本文指出了中医药计算药理学研究中的瓶颈问题 | 探讨中医药系统药理学相关数据库的进展,并展望计算研究的未来方向 | 中医药配方、草药、成分、靶点、表型等六个关键实体 | NA | NA | 网络分析、深度学习、基础模型 | NA | NA | NA |
14233 | 2024-10-15 |
Instruction-Level Power Side-Channel Leakage Evaluation of Soft-Core CPUs on Shared FPGAs
2023, Journal of hardware and systems security
DOI:10.1007/s41635-023-00135-1
PMID:38037617
|
研究论文 | 本文研究了在共享FPGA环境中,软核CPU在指令级别的功耗侧信道泄漏问题 | 本文首次在没有物理访问或昂贵测量设备的环境中分析了指令级别的功耗侧信道泄漏,并展示了在多租户FPGA场景中的泄漏情况 | 尽管在某些情况下可以识别指令的操作码,但泄漏同一类型指令之间的差异对深度学习模型来说是一个挑战 | 评估在共享FPGA环境中,软核CPU在指令级别的功耗侧信道泄漏情况 | 软核CPU在指令级别的功耗侧信道泄漏 | 计算机视觉 | NA | 功耗侧信道分析 | 深度学习模型 | 功耗侧信道数据 | NA |
14234 | 2024-10-14 |
Protein-Protein Interaction Prediction via Structure-Based Deep Learning
2024-Nov, Proteins
IF:3.2Q2
DOI:10.1002/prot.26721
PMID:38923590
|
研究论文 | 本文提出了一种基于结构深度学习的蛋白质-蛋白质相互作用预测框架RSPPI | 结合残差神经网络(ResNet)和空间金字塔池化(SPP),利用蛋白质序列的物理化学性质和空间结构信息进行预测 | 未提及 | 开发一种新的AI算法来预测蛋白质-蛋白质相互作用 | 蛋白质-蛋白质相互作用 | 机器学习 | NA | 深度学习 | ResNet | 蛋白质序列 | 未提及 |
14235 | 2024-10-14 |
Validation of the Mirai model for predicting breast cancer risk in Mexican women
2024-Oct-10, Insights into imaging
IF:4.1Q1
DOI:10.1186/s13244-024-01808-3
PMID:39387984
|
研究论文 | 验证Mirai模型在预测墨西哥女性乳腺癌风险中的表现 | Mirai模型在非白人少数族裔中的应用研究较少 | 模型在预测未来乳腺癌风险中的表现中等,需要进一步改进 | 验证Mirai模型在预测墨西哥女性乳腺癌风险中的表现 | 墨西哥女性乳腺癌风险 | 机器学习 | 乳腺癌 | 深度学习 | 深度学习模型 | 影像 | 3110名患者,其中76名在5年随访期内发展为乳腺癌 |
14236 | 2024-10-14 |
A novel embedded kernel CNN-PCFF algorithm for breast cancer pathological image classification
2024-10-10, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-74025-z
PMID:39390003
|
研究论文 | 提出了一种新的嵌入式核函数CNN-PCFF算法用于乳腺癌病理图像分类 | 通过在主成分分析中嵌入核函数,形成多核主成分,将高维特征融合为一些代表性的综合变量,从而实现降维 | 未提及具体限制 | 提高乳腺癌病理图像分类的性能 | 乳腺癌病理图像 | 计算机视觉 | 乳腺癌 | 主成分分析 | CNN | 图像 | 两个公开的乳腺癌图像数据集 |
14237 | 2024-10-13 |
Identification of dynamic networks community by fusing deep learning and evolutionary clustering
2024-Oct-10, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-74361-0
PMID:39390015
|
研究论文 | 本文提出了一种融合深度学习和进化聚类的动态网络社区检测方法 | 结合深度学习和进化聚类,提出了一种新的动态社区检测方法DLEC,能够有效挖掘复杂非线性结构并生成高质量的社区结构 | NA | 旨在提高动态网络中社区检测的准确性和鲁棒性 | 动态网络中的社区结构 | 机器学习 | NA | 深度学习 | 多层深度自编码器 | 网络数据 | 合成网络和真实世界网络 |
14238 | 2024-10-14 |
Galformer: a transformer with generative decoding and a hybrid loss function for multi-step stock market index prediction
2024-Oct-10, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-72045-3
PMID:39390029
|
研究论文 | 本文介绍了一种名为Galformer的创新型Transformer模型,结合生成式解码和混合损失函数,用于多步股票市场指数预测 | Galformer模型具有生成式解码器和混合损失函数,能够显著提高长序列预测的速度,并结合定量误差和趋势准确性优化模型 | NA | 提高股票市场指数预测的准确性和效率 | 股票市场指数的多步预测 | 机器学习 | NA | Transformer模型 | Transformer | 时间序列数据 | 四个典型股票市场指数:CSI 300指数、S&P 500指数、道琼斯工业平均指数(DJI)和纳斯达克综合指数(IXIC) |
14239 | 2024-10-14 |
Integrating holotomography and deep learning for rapid detection of NPM1 mutations in AML
2024-10-10, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-75168-9
PMID:39390137
|
研究论文 | 本研究利用全息断层成像(HT)和深度学习技术,快速检测急性髓系白血病(AML)中的NPM1突变 | 首次将全息断层成像与深度学习结合,用于检测AML中的NPM1突变,提供了一种早期、高效且成本效益高的诊断方法 | 研究样本量相对较小,且仅限于AML中的NPM1突变检测 | 开发一种新的方法,用于快速准确地诊断AML中的NPM1突变 | AML患者中的NPM1突变 | 数字病理学 | 白血病 | 全息断层成像(HT) | 卷积神经网络(CNN) | 图像 | 2073张HT髓母细胞图像,来自48名个体,包括NPM1野生型和突变样本 |
14240 | 2024-10-14 |
Application of artificial intelligence model in pathological staging and prognosis of clear cell renal cell carcinoma
2024-Oct-10, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-024-01437-8
PMID:39390246
|
研究论文 | 本研究开发了一种基于全切片图像的深度学习模型,用于预测透明细胞肾细胞癌的病理分期和预后 | 首次使用深度学习模型从病理图像中准确预测透明细胞肾细胞癌的病理分期和预后 | 研究样本仅来自TCGA数据库,可能存在数据偏倚 | 开发一种能够准确预测透明细胞肾细胞癌病理分期和预后的深度学习模型 | 透明细胞肾细胞癌患者的病理图像 | 数字病理学 | 肾癌 | 深度学习 | 深度学习模型 | 图像 | 513例透明细胞肾细胞癌患者 |