本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14281 | 2024-10-11 |
Spatiotemporal Imputation of MAIAC AOD Using Deep Learning with Downscaling
2020-Feb, Remote sensing of environment
IF:11.1Q1
DOI:10.1016/j.rse.2019.111584
PMID:32158056
|
研究论文 | 本文提出了一种利用深度学习进行降尺度处理的方法,用于填补MAIAC AOD数据的缺失值 | 本文创新性地使用深度学习结合降尺度技术,通过残差连接和参数共享来提高学习效果并减少过拟合,同时采用bagging方法降低误差方差 | NA | 研究目的是填补MAIAC AOD数据的缺失值,以提高空气质量建模的可靠性 | 研究对象是MAIAC AOD数据及其在加利福尼亚州的时空变异性 | 机器学习 | NA | 深度学习 | 深度残差网络 | 空间数据 | 研究涵盖了2000年至2016年加利福尼亚州的MAIAC AOD数据 |
14282 | 2024-10-11 |
Impact of a deep learning assistant on the histopathologic classification of liver cancer
2020, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-020-0232-8
PMID:32140566
|
研究论文 | 研究开发了一种基于深度学习的助手,用于帮助病理学家区分肝细胞癌和胆管癌,并评估其对诊断性能的影响 | 首次评估了深度学习助手在临床工作流程中对病理学家诊断性能的实际影响 | 研究样本量较小,且仅限于两种肝癌亚型 | 探讨深度学习助手在肝癌病理分类中的应用及其对病理学家诊断准确性的影响 | 肝细胞癌和胆管癌的病理分类,以及深度学习助手对病理学家诊断性能的影响 | 数字病理学 | 肝癌 | 深度学习 | NA | 图像 | 验证集26个全切片图像,独立测试集80个全切片图像,11名病理学家 |
14283 | 2024-10-11 |
Real-time colorectal cancer diagnosis using PR-OCT with deep learning
2020, Theranostics
IF:12.4Q1
DOI:10.7150/thno.40099
PMID:32194821
|
研究论文 | 本文设计了一种基于深度学习的模式识别光学相干断层扫描(PR-OCT)系统,用于实时诊断结直肠癌 | 本文的创新点在于将深度学习技术应用于PR-OCT系统,实现了对结直肠癌的实时自动诊断 | 本文的局限性在于样本量相对较小,未来需要更大规模的数据集进行验证 | 本文的研究目的是开发一种能够实时诊断结直肠癌的新技术 | 本文的研究对象是结直肠癌及其相关组织 | 计算机视觉 | 结直肠癌 | 光学相干断层扫描(OCT) | 卷积神经网络(CNN) | 图像 | 约26,000张OCT图像,来自20个肿瘤区域、16个良性区域和6个其他异常区域 |
14284 | 2024-10-11 |
Automated identification of retinopathy of prematurity by image-based deep learning
2020, Eye and vision (London, England)
DOI:10.1186/s40662-020-00206-2
PMID:32766357
|
研究论文 | 本研究开发了一种基于深度学习的智能系统,用于自动识别早产儿视网膜病变(ROP)的严重程度 | 本研究首次使用101层卷积神经网络(ResNet)和更快的区域卷积神经网络(Faster-RCNN)进行图像分类和识别,并实现了对ROP严重程度的四级分类 | NA | 开发一种能够自动分类ROP严重程度并检测ROP阶段和plus病变的智能系统 | 早产儿视网膜病变(ROP)的严重程度分类和病变检测 | 计算机视觉 | NA | 卷积神经网络(CNN) | ResNet和Faster-RCNN | 图像 | 36,231张眼底图像 |
14285 | 2024-10-11 |
Predicting risk of late age-related macular degeneration using deep learning
2020, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-020-00317-z
PMID:32904246
|
研究论文 | 本文利用深度学习和生存分析预测晚期年龄相关性黄斑变性的风险 | 本文首次展示了深度学习与生存分析结合的方法,能够准确预测晚期年龄相关性黄斑变性的风险,并在独立数据集上验证了其高预测准确性 | 本文的模型尚未在其他独立数据集上进行广泛验证,其泛化能力仍需进一步研究 | 开发一种能够准确预测晚期年龄相关性黄斑变性风险的深度学习模型,以辅助临床决策 | 年龄相关性黄斑变性患者 | 计算机视觉 | 眼科疾病 | 深度学习 | 深度学习模型 | 图像 | 3298名参与者(超过80,000张图像) |
14286 | 2024-10-11 |
Deep Learning Applications to Combat Novel Coronavirus (COVID-19) Pandemic
2020, SN computer science
DOI:10.1007/s42979-020-00383-w
PMID:33163975
|
综述 | 本文综述了深度学习在抗击新型冠状病毒(COVID-19)大流行中的应用 | 本文探讨了深度学习在医疗影像、疾病追踪、蛋白质结构分析、药物发现和病毒严重性与传染性分析等多个方面的创新应用 | 尽管深度学习算法在多个研究中得到应用,但在实际问题中的应用仍存在一些限制和挑战 | 讨论深度学习在控制新型冠状病毒(COVID-19)大流行中的贡献 | 深度学习在医疗影像、疾病追踪、蛋白质结构分析、药物发现和病毒严重性与传染性分析等领域的应用 | 机器学习 | 新型冠状病毒(COVID-19) | 深度学习 | NA | NA | NA |
14287 | 2024-10-11 |
Development and evaluation of inexpensive automated deep learning-based imaging systems for embryology
2019-12-21, Lab on a chip
IF:6.1Q2
DOI:10.1039/c9lc00721k
PMID:31755505
|
研究论文 | 开发并评估了一种基于深度学习的低成本自动化成像系统,用于胚胎学中的胚胎评估 | 开发了两种低成本的自动化成像平台,利用人工智能技术进行快速、可靠和准确的胚胎形态质量评估 | 仅在低分辨率图像数据上进行了测试,未提及高分辨率图像数据的效果 | 开发一种成本效益高且易于使用的硬件和软件系统,用于胚胎图像数据的采集和分析,以提高胚胎评估的效率 | 胚胎的形态质量评估 | 计算机视觉 | NA | 深度学习 | 卷积神经网络(CNN) | 图像 | 272和319张胚胎图像 |
14288 | 2024-10-11 |
Illuminating Clues of Cancer Buried in Prostate MR Image: Deep Learning and Expert Approaches
2019-10-30, Biomolecules
IF:4.8Q1
DOI:10.3390/biom9110673
PMID:31671711
|
研究论文 | 本文通过可解释模型比较了深度学习和人类专家在前列腺MR图像中识别癌症区域的方法 | 本文首次通过3D重建病理图像,比较了深度学习关注的区域与放射科医生和病理学家识别的癌症位置的重叠情况 | 本文仅使用了307张前列腺MR图像和896张病理图像,样本量有限 | 比较深度学习和人类专家在前列腺MR图像中识别癌症区域的方法,并探讨深度学习在癌症诊断中的潜力 | 前列腺MR图像和病理图像 | 计算机视觉 | 前列腺癌 | 深度学习 | 深度神经网络 | 图像 | 307张前列腺MR图像和896张病理图像 |
14289 | 2024-10-11 |
Higher SNR PET image prediction using a deep learning model and MRI image
2019-05-23, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ab0dc0
PMID:30844784
|
研究论文 | 本文提出了一种使用深度神经网络和MRI图像提高PET图像信噪比的方法 | 本文创新性地使用深度神经网络和MRI图像来提高PET图像的信噪比,而不需要在训练中使用高信噪比的PET图像 | 本文主要在数字脑模型上进行验证,尚未在真实临床数据上进行广泛验证 | 提高PET图像的信噪比 | PET图像和MRI图像 | 计算机视觉 | NA | 深度神经网络 | U-Net | 图像 | 使用了来自BrainWeb的数字脑模型进行评估,模拟了6分钟的脑PET扫描 |
14290 | 2024-10-11 |
Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction
2018-05-16, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-018-2184-4
PMID:29769044
|
研究论文 | 本文利用t-SNE技术降低特征空间的维度,展示卷积神经网络(CNN)在组织病理学中的分类和异常检测 | 开发了一种量化和透明的方法,在softmax压缩之前可视化分类决策,并使用t-SNE图上的类间关系进行统计驱动的多类分类 | NA | 探索如何利用深度学习在组织病理学中进行计算机视觉,并开发更通用的工具来可视化基于组织学的深度学习推断和决策 | 组织病理学图像的分类和异常检测 | 数字病理学 | NA | t-SNE | CNN | 图像 | NA |
14291 | 2024-10-11 |
Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions
2018-Apr, Nuclear medicine and molecular imaging
IF:1.3Q3
DOI:10.1007/s13139-017-0504-7
PMID:29662559
|
综述 | 本文综述了深度学习在核医学和分子影像学中的应用现状及未来发展方向 | 探讨了深度学习在分子影像学中的独特应用,特别是生物标志物开发方面 | 未提及具体的技术细节或实验结果 | 介绍深度学习在分子影像学中的应用,并讨论其对临床决策和专家角色的潜在影响 | 核医学和分子影像学中的深度学习应用 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
14292 | 2024-10-11 |
Opportunities and obstacles for deep learning in biology and medicine
2018-04, Journal of the Royal Society, Interface
DOI:10.1098/rsif.2017.0387
PMID:29618526
|
研究论文 | 本文探讨了深度学习在生物学和医学领域的应用及其面临的机遇和挑战 | 深度学习在生物医学领域的应用显示出有希望的进展,尽管改进相对温和,但提供了加速或辅助人类研究的有价值手段 | 深度学习尚未彻底改变生物医学领域,且在解释模型预测、数据标注不足以及法律和隐私限制方面存在挑战 | 探讨深度学习在生物医学领域的应用潜力及其面临的挑战 | 深度学习在患者分类、基本生物过程和患者治疗中的应用 | 机器学习 | NA | 深度学习 | 神经网络 | 数据 | NA |
14293 | 2024-10-11 |
Predicting sex from brain rhythms with deep learning
2018-02-15, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-018-21495-7
PMID:29449649
|
研究论文 | 本文探讨了使用深度卷积神经网络从脑电图中预测性别的可行性 | 首次展示了深度神经网络能够从脑电图中提取性别特异性信息,准确率超过80% | NA | 探索脑电图中的性别特异性信息 | 脑电图数据 | 机器学习 | NA | 深度卷积神经网络 | CNN | 脑电图 | NA |
14294 | 2024-10-11 |
Fully automated detection of breast cancer in screening MRI using convolutional neural networks
2018-Jan, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.5.1.014502
PMID:29340287
|
研究论文 | 本文开发了一种利用早期相位扫描中的空间信息进行乳腺癌筛查MRI的完全自动化检测系统 | 提出了一个仅利用早期相位扫描中的空间信息进行乳腺癌检测的CADe系统,并在实验中显著提高了检测敏感性 | 未提及 | 开发一种适用于简化的MRI协议的乳腺癌筛查自动化检测系统 | 乳腺癌筛查MRI图像 | 计算机视觉 | 乳腺癌 | 深度学习 | 卷积神经网络 (CNN) | MRI图像 | 385个MRI扫描,包含161个恶性病变 |
14295 | 2024-10-11 |
Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection
2017-Dec-08, Sensors (Basel, Switzerland)
DOI:10.3390/s17122845
PMID:29292764
|
研究论文 | 本文介绍了基于16个差分微电容器的16通道电子鼻的设计、构建和测量,用于检测目标分子的蒸汽痕迹 | 提出了使用不同硅烷表面功能化的微电容器来增强化学选择性,并探讨了使用人工智能深度学习方法进一步提高选择性的可能性 | NA | 研究电子鼻的化学选择性和灵敏度,以可靠检测爆炸物和其他有害物质 | 16通道电子鼻及其对TNT、RDX、DNT等分子的检测能力 | NA | NA | NA | NA | NA | NA |
14296 | 2024-10-10 |
High-resolution image dataset for the automatic classification of phenological stage and identification of racemes in Urochloa spp. hybrids
2024-Dec, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.110928
PMID:39376481
|
研究论文 | 本文介绍了一个高分辨率RGB图像数据集,用于自动分类Urochloa spp.杂交种的物候阶段和识别花序 | 首次在Urochloa属中探索使用图像分析评估物候阶段和种子产量 | NA | 开发用于自动分类物候阶段和识别花序的机器学习和深度学习模型,以加速育种 | Urochloa spp.杂交种的物候阶段和花序 | 计算机视觉 | NA | RGB成像 | 机器学习和深度学习模型 | 图像 | 2400张高分辨率RGB图像,涵盖200个杂交种,拍摄时间为7个月 |
14297 | 2024-10-10 |
Dataset of infected date palm leaves for palm tree disease detection and classification
2024-Dec, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.110933
PMID:39376482
|
研究论文 | 本文介绍了一个用于检测和分类棕榈叶疾病的图像数据集 | 该数据集包含了8种主要影响棕榈叶的疾病类型,并提供了健康棕榈叶的基准 | 数据集主要关注棕榈叶和叶片的图像,未包括果实、树干和根部 | 旨在帮助早期识别和分类棕榈树感染 | 棕榈叶疾病和健康状态 | 计算机视觉 | NA | NA | 深度学习模型 | 图像 | 共收集了608张原始图像,最终处理后的数据集包含3089张图像 |
14298 | 2024-10-09 |
Deep fit_predic: a novel integrated pyramid dilation EfficientNet-B3 scheme for fitness prediction system
2024-Nov, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2023.2269287
PMID:37865927
|
研究论文 | 本研究介绍了一种新的深度学习技术,用于通过个人健康数据进行有效的健身预测 | 提出了Pyramid Dilated EfficientNet-B3技术,结合增强的变色龙群优化技术和Minkowski集成重力中心聚类方法,提高了健身预测的准确性 | NA | 开发一种高效的健身预测系统 | 个人健康数据 | 机器学习 | NA | 深度学习 | EfficientNet-B3 | 健康数据 | NA |
14299 | 2024-10-10 |
Differentiable modeling and optimization of non-aqueous Li-based battery electrolyte solutions using geometric deep learning
2024-Oct-05, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-024-51653-7
PMID:39369004
|
研究论文 | 本文开发了一种可微分的几何深度学习模型DiffMix,用于非水性锂基电池电解液溶液的建模和优化 | 本文通过创建几何深度学习可学习的物理系数,扩展了混合物热力学和传输定律,并结合机器人实验装置Clio,实现了电解液离子电导率的显著提升 | NA | 开发一种新的模型来优化电池电解液的性能 | 非水性锂基电池电解液 | 机器学习 | NA | 几何深度学习 | 几何深度学习模型 | 混合物热力学和离子传输属性 | NA |
14300 | 2024-10-10 |
Unsupervised few shot learning architecture for diagnosis of periodontal disease in dental panoramic radiographs
2024-10-05, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-73665-5
PMID:39369017
|
研究论文 | 研究提出了一种用于牙科全景X光片中牙周病诊断的无监督少样本学习算法 | 引入了一种新的无监督少样本学习算法,利用UNet架构生成感兴趣区域,并通过卷积变分自编码器提取关键特征,通过高级聚类算法进行标签分配,克服了医学影像中标记数据稀缺的问题 | NA | 解决医学影像中标记数据稀缺的问题,提高牙周病诊断的准确性和效率 | 牙科全景X光片中的牙周病诊断 | 计算机视觉 | 牙周病 | UNet架构、卷积变分自编码器 | UNet、卷积变分自编码器 | 图像 | 100张标记图像 |