本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14361 | 2025-04-05 |
Radioisotope compositional analysis using Monte Carlo γ-ray simulations and regression neural network
2025-Jun, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine
IF:1.6Q3
DOI:10.1016/j.apradiso.2025.111746
PMID:40020474
|
research paper | 本文开发了一种基于回归的卷积神经网络(CNN),用于预测模拟混合源光谱中的源及其比例,并与传统的库最小二乘算法进行了比较 | 采用回归CNN预测混合放射性同位素的光谱组成,相比传统线性方法具有更高的准确性和效率 | 研究基于模拟数据,实际环境中的噪声和干扰可能影响模型性能 | 开发高效自动化的γ光谱分析工具,用于放射性同位素的识别和定量分析 | 6种不同的放射性同位素及其混合光谱 | machine learning | NA | Monte Carlo γ-ray simulations, GEANT4软件包 | CNN | γ-ray光谱数据 | 6种同位素的综合模拟数据集 | NA | NA | NA | NA |
14362 | 2025-04-05 |
Reconstructing historical climate fields with deep learning
2025-Apr-04, Science advances
IF:11.7Q1
DOI:10.1126/sciadv.adp0558
PMID:40173235
|
research paper | 使用基于傅里叶卷积的深度学习方法重建历史气候场 | 提出了一种基于傅里叶卷积的深度学习方法,能够在大面积和不规则缺失数据的情况下,仅凭极少信息就能真实重建历史气候场,并重现已知历史事件 | NA | 填补历史气候记录的缺失数据,重建历史气候场 | 历史气候场数据 | machine learning | NA | deep learning, Fourier convolutions | CNN | climate model output | NA | NA | NA | NA | NA |
14363 | 2025-04-05 |
Interpretable multimodal deep learning model for predicting post-surgical international society of urological pathology grade in primary prostate cancer
2025-Apr-04, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-025-07248-5
PMID:40183953
|
研究论文 | 开发了一种可解释的多模态深度学习模型,用于预测前列腺癌术后国际泌尿病理学会分级 | 整合了18F-PSMA-PET/CT成像特征与临床变量,构建了可解释的多模态融合模型,显著优于术前活检Gleason评分 | 研究为回顾性设计,样本量相对有限(222例患者) | 提高前列腺癌病理分级的准确性,优化手术规划和个性化治疗策略 | 前列腺癌患者 | 数字病理 | 前列腺癌 | 18F-PSMA-PET/CT成像,深度迁移学习 | 多模态融合模型 | 医学影像(PET/CT),临床参数 | 222例前列腺癌患者(2020-2024年) | NA | NA | NA | NA |
14364 | 2025-04-05 |
Advancing Visual Perception Through VCANet-Crossover Osprey Algorithm: Integrating Visual Technologies
2025-Apr-03, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01467-w
PMID:40180632
|
research paper | 该研究提出了一种基于视觉核心适应网络和交叉鱼鹰算法的VCANet-COP模型,用于糖尿病视网膜病变的细微病变识别 | VCANet-COP模型整合了稀疏自编码器和鱼鹰优化算法,模拟了人类视觉系统的多个处理区域,提高了病变检测的准确性和计算效率 | 虽然模型在多个数据集上表现优异,但未提及在临床实际应用中的验证情况 | 开发一种高效准确的自动化糖尿病视网膜病变筛查方法 | 糖尿病视网膜病变的细微病变识别 | digital pathology | diabetic retinopathy | deep learning | VCANet-COP (整合SAEs和OOA) | retinal fundus images | 多个DR数据集(DR-Data, STARE, IDRiD, DRIVE, RFMID) | NA | NA | NA | NA |
14365 | 2025-10-07 |
Global Clue-Guided Cross-Memory Quaternion Transformer Network for Multisource Remote Sensing Data Classification
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3406735
PMID:38875091
|
研究论文 | 提出一种用于多源遥感数据分类的全局线索引导跨记忆四元数Transformer网络 | 设计了独立挤压扩展融合结构、跨记忆四元数Transformer结构和跨模态对比学习结构,有效处理多模态数据的异构性并挖掘互补性 | NA | 解决多源遥感数据分类中模态异构性问题并探索模态互补性 | 多源遥感数据[高光谱图像(HSI)和合成孔径雷达(SAR)/激光雷达(LiDAR)] | 计算机视觉 | NA | 遥感成像技术 | Transformer | 多源遥感图像数据 | 三个公共多源遥感数据集 | NA | 三分支结构,独立挤压扩展融合结构,跨记忆四元数Transformer,跨模态对比学习 | NA | NA |
14366 | 2025-10-07 |
Leveraging Unsupervised Data and Domain Adaptation for Deep Regression in Low-Cost Sensor Calibration
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3409364
PMID:38889022
|
研究论文 | 本文提出了一种用于低成本传感器校准的半监督域自适应深度回归方法 | 将传感器校准任务转化为半监督域自适应问题,提出使用直方图损失对抗协变量偏移,并通过样本加权处理标签间隙 | NA | 提高低成本空气质量传感器的校准精度 | 低成本空气质量传感器数据 | 机器学习 | NA | 深度学习 | 深度回归模型 | 传感器数据 | NA | NA | NA | R²分数, MAE | NA |
14367 | 2025-10-07 |
A Novel Hierarchical Cross-Stream Aggregation Neural Network for Semantic Segmentation of 3-D Dental Surface Models
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3404276
PMID:38848227
|
研究论文 | 提出一种用于3D牙科模型语义分割的分层跨流聚合神经网络 | 设计了基于多流架构的分层跨流聚合模块,通过上下文聚合和判别性聚合联合优化多视图特征学习 | NA | 实现精确的3D牙科模型语义分割以支持个性化正畸治疗规划 | 真实患者的3D牙科表面模型 | 计算机视觉 | 牙科疾病 | 3D牙科模型分析 | 神经网络 | 3D点云数据 | 公共数据集和内部真实患者数据集 | PyTorch | 分层跨流聚合网络,多流骨干网络 | 语义分割精度 | NA |
14368 | 2025-10-07 |
Learning Disentangled Priors for Hyperspectral Anomaly Detection: A Coupling Model-Driven and Data-Driven Paradigm
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3401589
PMID:38833391
|
研究论文 | 提出一种结合模型驱动与数据驱动方法的学习解耦先验耦合范式,用于高光谱异常检测 | 首次将模型驱动的低秩表示方法与数据驱动的深度学习技术通过解耦先验学习相结合,通过跳跃残差连接优雅地建模显式和隐式先验之间的关系 | 未在抽象中明确说明具体局限性 | 提高高光谱图像中背景与异常物体的区分准确度 | 高光谱图像中的背景和异常物体 | 计算机视觉 | NA | 高光谱成像 | 深度学习, 低秩表示 | 高光谱图像 | 多个广泛认可的数据集(未指定具体数量) | NA | 深度展开架构, 跳跃残差连接 | 检测性能, 泛化能力 | NA |
14369 | 2025-10-07 |
Brain-Inspired Learning, Perception, and Cognition: A Comprehensive Review
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3401711
PMID:38809737
|
综述 | 本文从微观、介观、宏观和超宏观视角全面回顾了受脑启发的深度学习算法在感知、认知和理解决策方面的研究进展 | 首次从四个空间尺度(微观/介观/宏观/超宏观)系统梳理脑启发算法,并总结了该领域面临的十大开放性问题 | 作为综述文章未提出新的算法模型,主要聚焦于现有研究的系统性归纳 | 推动下一代人工智能技术发展,通过脑科学机制提升现有模型的智能水平 | 脑启发的人工智能算法与模型 | 机器学习 | NA | NA | 深度学习 | NA | NA | NA | NA | NA | NA |
14370 | 2025-10-07 |
Spectral Tensor Layers for Communication-Free Distributed Deep Learning
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3394861
PMID:38809740
|
研究论文 | 提出一种用于无通信分布式深度学习的光谱张量层 | 将数据表示为张量形式并用张量积替代传统神经网络中的矩阵积,通过线性变换将数据集分割为多个光谱子数据集实现零通信成本的并行训练 | NA | 实现无通信成本的分布式深度学习 | 分布式深度学习系统 | 机器学习 | NA | 张量分解,线性变换 | 光谱张量网络 | 图像 | MNIST, CIFAR-10, ImageNet-1K, ImageNet-21K数据集 | NA | 并行分支神经网络 | NA | NA |
14371 | 2025-10-07 |
Deep Geometric Learning With Monotonicity Constraints for Alzheimer's Disease Progression
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3394598
PMID:38771688
|
研究论文 | 提出一种结合单调性约束的深度几何学习方法用于预测阿尔茨海默病进展 | 开发了结合拓扑空间变换、ODE-RGRU和轨迹估计三个模块的新型几何学习框架,并引入单调性约束来反映测量转换的不可逆性 | NA | 预测阿尔茨海默病的临床进展轨迹 | 阿尔茨海默病患者 | 医学影像分析 | 阿尔茨海默病 | 结构磁共振成像 | RNN, ODE | MRI影像, 认知评分 | NA | NA | ODE-RGRU | 临床标签预测准确率, 认知评分预测准确率 | NA |
14372 | 2025-10-07 |
An Interpretable Adaptive Multiscale Attention Deep Neural Network for Tabular Data
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3392355
PMID:38748522
|
研究论文 | 提出一种用于表格数据的自适应多尺度注意力深度神经网络架构 | 通过并行多级特征加权实现自适应多尺度注意力机制,提供四个层次的可解释性 | NA | 提升深度学习在表格数据上的性能并增强模型可解释性 | 表格结构化数据 | 机器学习 | NA | 深度学习 | 深度神经网络 | 表格数据 | 包含小型、中型、大型和超大型数据集 | NA | 自适应多尺度注意力深度神经网络 | F1-score, 平均绝对误差 | NA |
14373 | 2025-10-07 |
Deep Probabilistic Principal Component Analysis for Process Monitoring
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3386890
PMID:38652625
|
研究论文 | 提出一种新型深度概率主成分分析模型用于工业过程监控 | 结合概率建模与深度学习的优势,通过分层预训练和端到端微调构建深度概率主成分分析模型 | NA | 工业过程监控与故障检测 | 工业过程数据 | 机器学习 | NA | 概率潜在变量模型 | 深度概率主成分分析 | 工业过程数据 | 田纳西伊斯曼过程和多相流设施数据集 | NA | DePPCA | 监控统计量 | NA |
14374 | 2025-04-05 |
Soft sensor modeling using deep learning with maximum relevance and minimum redundancy for quality prediction of industrial processes
2025-Apr, ISA transactions
IF:6.3Q1
DOI:10.1016/j.isatra.2025.02.010
PMID:39961741
|
研究论文 | 提出了一种基于最大相关和最小冗余的表示学习方法(MRMRRL),用于工业过程的质量预测 | 结合了质量相关特征提取、隐藏特征冗余减少和信息补偿三个通道的优点,显著提升了性能 | 未提及具体的工业过程类型或应用范围的局限性 | 提高工业过程质量预测的准确性和效率 | 工业过程的质量预测 | 机器学习 | NA | 自动编码器(AE)、堆叠自动编码器(SAE)、核主成分分析(KPCA) | MRMRRL、SAE | 工业过程数据 | 未提及具体样本数量 | NA | NA | NA | NA |
14375 | 2025-04-05 |
The current landscape of artificial intelligence in computational histopathology for cancer diagnosis
2025-Apr-01, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-025-02212-z
PMID:40167870
|
综述 | 本文综述了2013年至2024年间人工智能在计算组织病理学中用于癌症诊断的关键方法和应用 | 涵盖了监督学习、无监督学习、弱监督学习和迁移学习等多种深度学习方法在组织病理学图像识别中的应用,并探讨了AI在识别基因突变和标准病理生物标志物方面的潜力 | 仅基于41项主要研究,可能未涵盖该领域所有最新进展 | 评估人工智能在计算组织病理学中用于癌症诊断和预后的应用现状 | 组织病理学图像 | 数字病理学 | 癌症 | 深度学习 | NA | 图像 | 41项主要研究 | NA | NA | NA | NA |
14376 | 2025-04-05 |
The potential of combined robust model predictive control and deep learning in enhancing control performance and adaptability in energy systems
2025-Apr-01, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95636-0
PMID:40169731
|
研究论文 | 本研究探讨了将鲁棒模型预测控制(RMPC)与深度学习相结合,以提升能源系统的性能和适应性 | 结合RMPC的鲁棒性与深度学习的学习和适应能力,提出了一种新型控制框架,显著提高了控制精度和运行效率 | 研究仅通过模拟验证,缺乏实际系统应用的验证 | 提升能源系统的控制性能和适应性 | 热电联产(CHP)、电力制氢和电力制甲烷等能源系统 | 机器学习 | NA | 鲁棒模型预测控制(RMPC)和深度学习 | RMPC与深度学习模型 | 模拟数据 | NA | NA | NA | NA | NA |
14377 | 2025-04-05 |
Robust ensemble classifier for advanced synthetic aperture radar target classification in diverse operational conditions
2025-Apr-01, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-93536-x
PMID:40169814
|
research paper | 本文提出了一种增强的集成分类框架,用于合成孔径雷达(SAR)自动目标识别(ATR)在多样化操作条件下的应用 | 该方法整合了ResNet、SVM和模板匹配的优势,通过多数投票结合它们的互补能力,提高了分类准确性和鲁棒性 | 未提及具体的计算资源需求或处理时间,可能在实际应用中存在效率问题 | 提高SAR自动目标识别在多样化操作条件下的分类准确性和鲁棒性 | 合成孔径雷达(SAR)图像中的目标 | computer vision | NA | ResNet, SVM, 模板匹配 | ResNet, SVM | SAR图像 | 使用MSTAR数据集进行实验验证 | NA | NA | NA | NA |
14378 | 2025-04-05 |
An adaptive search mechanism with convolutional learning networks for online social media text summarization and classification model
2025-Apr-01, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95381-4
PMID:40169845
|
研究论文 | 提出了一种基于自适应搜索机制和卷积学习网络的社交媒体文本摘要与分类模型(ASMHLN-SMDSCM) | 结合BERT模型进行特征提取,采用蛾搜索算法(MSA)优化超参数,并使用TabNet+CNN模型进行分类 | 未提及模型在大规模数据集上的泛化能力或计算效率 | 开发高效的社交媒体文本摘要与分类方法 | 社交媒体短文本数据 | 自然语言处理 | NA | BERT, MSA, TabNet, CNN | TabNet+CNN | 文本 | FIFA和FARMER数据集(具体数量未提及) | NA | NA | NA | NA |
14379 | 2025-04-05 |
Graph convolution network for fraud detection in bitcoin transactions
2025-Apr-01, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95672-w
PMID:40169862
|
研究论文 | 本文提出了一种基于图卷积网络(GCN)的比特币交易欺诈检测方法 | 使用GCN模型检测比特币交易中的欺诈行为,相比现有模型如Logistic Regression、LSTM、SVM和Random Forest,表现出更高的准确性和性能 | 数据集中部分交易未标注,可能影响模型的训练效果 | 检测比特币交易中的非法活动,特别是反洗钱(AML) | 比特币交易数据 | 机器学习 | NA | 图卷积网络(GCN) | GCN | 图数据 | Elliptic比特币数据集,包含标记为合法和非法的交易 | NA | NA | NA | NA |
14380 | 2025-04-05 |
Building occupancy estimation using single channel CW radar and deep learning
2025-Apr-01, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95752-x
PMID:40169921
|
研究论文 | 本研究提出了一种基于24GHz连续波雷达和深度学习的新型室内人数估计方法,用于智能建筑的优化、能效提升和安全保障 | 采用连续波雷达系统结合时频映射技术(CWT和功率谱分析),提供了一种不依赖WiFi或PIR传感器的隐私保护替代方案 | 实验主要针对静态场景(久坐人员),动态场景(行走环境)的准确率相对较低(86.5%) | 开发非侵入式、保护隐私的智能建筑人数估计方法 | 室内人员数量 | 机器学习 | NA | 24GHz连续波雷达、连续小波变换(CWT)、功率谱分析 | DarkNet19、MobileNetV2、ResNet18 | 雷达回波生成的时频标度图 | 1680张图像样本(静态场景4小时40分钟数据)+ 1小时连续行走环境数据 | NA | NA | NA | NA |