本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14541 | 2024-10-04 |
TIANA: transcription factors cooperativity inference analysis with neural attention
2024-Aug-22, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-024-05852-0
PMID:39174927
|
研究论文 | 本文介绍了一种名为TIANA的深度学习框架,用于解释转录因子协同作用的分析 | TIANA利用神经网络注意力机制来揭示转录因子之间的复杂依赖关系,相较于传统方法具有更高的解释性和鲁棒性 | NA | 开发一种新的方法来解析转录因子在远端调控元件中的协同作用 | 转录因子及其在远端调控元件中的协同作用 | 机器学习 | NA | 神经网络注意力机制 | 深度学习框架 | 序列数据 | NA |
14542 | 2024-10-04 |
A hybrid deep learning and clonal selection algorithm-based model for commercial building energy consumption prediction
2024 Jul-Sep, Science progress
IF:2.6Q2
DOI:10.1177/00368504241283360
PMID:39340531
|
研究论文 | 本文提出了一种基于混合深度学习和克隆选择算法的商业建筑能耗预测与节能策略模型 | 该模型结合了卷积神经网络(CNN)、门控循环单元(GRU)和克隆选择算法(CSA),旨在提高能耗预测的准确性和效率 | NA | 解决传统能源管理方法预测精度低和适用性有限的问题 | 商业建筑的能耗预测与节能策略 | 机器学习 | NA | 克隆选择算法(CSA) | 卷积神经网络(CNN)、门控循环单元(GRU) | 数据集 | NA |
14543 | 2024-10-04 |
A visual-language foundation model for computational pathology
2024-Mar, Nature medicine
IF:58.7Q1
DOI:10.1038/s41591-024-02856-4
PMID:38504017
|
研究论文 | 介绍了一种用于计算病理学的视觉-语言基础模型CONCH,通过对比学习从图像和文本中提取特征 | CONCH模型通过任务无关的预训练,能够跨多种下游任务进行迁移,并在多个基准测试中达到最先进性能 | NA | 开发一种能够跨多种病理学任务进行迁移的视觉-语言基础模型 | 病理学图像和文本数据 | 数字病理学 | NA | 对比学习 | 视觉-语言基础模型 | 图像和文本 | 超过117万对图像-文本对 |
14544 | 2024-10-04 |
Protocol: revolutionizing central nervous system tumour diagnosis in low- and middle-income countries: an innovative observational study on intraoperative smear and deep learning
2024-Mar, JPMA. The Journal of the Pakistan Medical Association
DOI:10.47391/JPMA.S3.GNO-03
PMID:39262061
|
研究论文 | 评估在低收入和中等收入国家中,利用深度学习技术辅助术中脑涂片诊断的可行性和实施情况 | 引入了一种结合深度学习技术的创新方法,用于术中脑涂片诊断,旨在提高诊断效率和质量 | 研究仅在巴基斯坦的Aga Khan大学医院进行,样本量有限,可能影响结果的普适性 | 评估在手术室中使用深度学习技术辅助术中脑涂片诊断的可行性和实施情况 | 术中脑涂片诊断的准确性和效率 | 数字病理 | 神经系统肿瘤 | 深度学习技术 | NA | 图像 | 258例 |
14545 | 2024-10-04 |
Diffusion Posterior Sampling for Nonlinear CT Reconstruction
2024-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3007693
PMID:39238882
|
研究论文 | 本文提出了一种基于扩散后验采样的新方法,用于非线性CT图像重建 | 本文创新性地将扩散模型与非线性物理模型结合,实现了无需额外训练的通用非线性CT图像重建 | 当前方法仅依赖于线性化的X射线CT物理模型,本文方法解决了这一局限性 | 解决CT图像重建中的非线性问题 | CT图像重建 | 计算机视觉 | NA | 扩散模型 | 扩散模型 | 图像 | 在低剂量数据和稀疏视图几何中进行了验证 |
14546 | 2024-10-04 |
Leveraging Artificial Intelligence for Synergies in Drug Discovery: From Computers to Clinics
2024, Current pharmaceutical design
IF:2.6Q2
|
综述 | 本文综述了人工智能在药物发现和开发中的应用,涵盖了从分子识别到临床批准的全过程 | 探讨了人工智能在药物开发中的创新应用,如疫苗开发和纳米药物的靶向治疗 | NA | 探讨人工智能在药物发现和开发中的应用及其对科学研究的促进作用 | 人工智能在药物设计、发现和开发、中药、多组学数据整合、药物再利用和多药理学研究中的应用 | 机器学习 | NA | 机器学习 (ML)、深度学习 (DL)、神经网络 (NNs) | NA | 多组学数据 | NA |
14547 | 2024-10-04 |
Prompt-guided and multimodal landscape scenicness assessments with vision-language models
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0307083
PMID:39348404
|
研究论文 | 本文探讨了使用视觉-语言模型(VLM)进行景观美景预测的潜力,通过零样本和少样本学习方法评估景观的美学质量 | 本文引入了景观提示集成(LPE)方法,通过文本描述获取景观美景评分,无需图像数据集 | 本文未提及具体的局限性 | 测试视觉-语言模型在景观美景预测中的应用潜力 | 景观的美学质量 | 计算机视觉 | NA | 视觉-语言模型(VLM) | 线性层 | 图像 | 数百个样本 |
14548 | 2024-10-04 |
Graph neural pre-training based drug-target affinity prediction
2024, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2024.1452339
PMID:39350770
|
研究论文 | 本文提出了一种基于图神经预训练的药物-靶点亲和力预测方法 | 本文创新性地结合了药物和靶点的预训练模型,通过图神经网络提取特征,并利用2D卷积神经网络进行高层次表示,最终预测药物-靶点亲和力 | 本文未详细讨论模型的可解释性和泛化能力 | 加速药物发现过程中的药物-靶点亲和力预测 | 药物-靶点亲和力 | 机器学习 | NA | 图神经网络 | 2D卷积神经网络 | 图数据 | 大量未标记的训练样本和部分标记的训练样本 |
14549 | 2024-10-04 |
Intelligent analysis and measurement of semicircular canal spatial attitude
2024, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2024.1396513
PMID:39350970
|
研究论文 | 本文提出了一种基于颅脑MRI的智能方法,用于解释和测量半规管的空间方向 | 本文创新性地使用了nnDetection深度学习算法进行半规管和眼球的自动分割,并通过点特征分析和奇异值分解方法计算半规管的法向量 | NA | 开发一种智能方法,用于构建精确的数学模型,准确表示半规管的空间方向 | 半规管的空间方向 | 计算机视觉 | NA | 深度学习 | nnDetection | 图像 | 115例颅脑MRI扫描 |
14550 | 2024-10-04 |
Assessing microvascular invasion in HBV-related hepatocellular carcinoma: an online interactive nomogram integrating inflammatory markers, radiomics, and convolutional neural networks
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1401095
PMID:39351352
|
研究论文 | 研究开发了一种基于炎症标志物、放射组学和卷积神经网络的在线交互式诺模图,用于预测HBV相关肝细胞癌中的微血管侵犯 | 结合了炎症标志物、放射组学特征和深度学习特征,开发了一种新的在线交互式诺模图,用于术前预测微血管侵犯 | NA | 开发一种术前预测HBV相关肝细胞癌微血管侵犯的在线交互式诺模图 | HBV相关肝细胞癌患者的微血管侵犯 | 数字病理学 | 肝癌 | 放射组学、卷积神经网络 | 3D ResNet | 图像 | 173名HBV相关肝细胞癌患者 |
14551 | 2024-10-04 |
Classification of tomato seedling chilling injury based on chlorophyll fluorescence imaging and DBO-BiLSTM
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1409200
PMID:39354943
|
研究论文 | 本文利用叶绿素荧光图像集,通过蜣螂优化算法增强深度学习双向长短期记忆模型,提高番茄幼苗冷害分类预测的准确性 | 本文提出了一种基于蜣螂优化算法增强的双向长短期记忆模型,用于番茄幼苗冷害分类,显著提高了分类预测的准确性 | 本文未详细讨论模型在不同环境条件下的泛化能力 | 研究目的是通过叶绿素荧光成像技术,实现番茄幼苗冷害的自动分类和标记,为植物自身抗冷害研究和深度学习分类方法在精准农业中的应用奠定基础 | 研究对象是番茄幼苗的冷害分类 | 计算机视觉 | NA | 叶绿素荧光成像技术 | 双向长短期记忆模型(BiLSTM) | 图像 | 使用了番茄幼苗的叶绿素荧光图像集进行训练和测试 |
14552 | 2024-10-04 |
YOLO-CFruit: a robust object detection method for Camellia oleifera fruit in complex environments
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1389961
PMID:39354950
|
研究论文 | 提出了一种名为YOLO-CFruit的深度学习方法,用于在复杂环境中准确检测油茶果 | 结合了CBAM模块和CSP模块与Transformer,改进了YOLOv5的损失函数,提高了检测精度和速度 | 未提及具体限制 | 开发一种在自然环境中准确检测油茶果的鲁棒方法,为自动化采摘设备奠定基础 | 油茶果的检测 | 计算机视觉 | NA | 深度学习 | YOLOv5 | 图像 | 收集了油茶果的图像并创建了数据集,使用了数据增强方法增加数据多样性 |
14553 | 2024-10-04 |
Machine Learning Techniques to Predict Mental Health Diagnoses: A Systematic Literature Review
2024, Clinical practice and epidemiology in mental health : CP & EMH
|
综述 | 本研究通过系统文献综述方法,探讨了机器学习在预测大学生心理健康状况中的应用 | 本研究首次系统综述了多种机器学习模型在预测心理健康诊断中的应用,并强调了卷积神经网络(CNN)在双相情感障碍诊断中的高准确性 | 研究存在数据集不足、心理健康状况异质性考虑不足以及缺乏纵向数据等问题 | 探讨机器学习在预测大学生心理健康状况中的潜力与挑战 | 大学生的心理健康状况 | 机器学习 | NA | 深度学习 | 卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)、深度神经网络、极限学习机(ELM) | 文本 | 30项相关研究 |
14554 | 2024-10-04 |
Enhanced classification and severity prediction of major depressive disorder using acoustic features and machine learning
2024, Frontiers in psychiatry
IF:3.2Q2
DOI:10.3389/fpsyt.2024.1422020
PMID:39355380
|
研究论文 | 本研究利用深度学习方法构建分类和预测模型,以提高对抑郁症和健康对照组的分类准确性 | 本研究采用深度学习方法,通过声学特征对抑郁症和健康对照组进行分类和严重程度预测,提高了分类准确性 | 研究结果可能受到焦虑共病的影响 | 提高抑郁症和健康对照组的分类准确性,并预测抑郁症的严重程度 | 抑郁症和健康对照组的分类及抑郁症严重程度的预测 | 机器学习 | 精神疾病 | 深度学习 | 神经网络 | 声学特征 | 120名年龄在16-25岁的参与者,包括64名抑郁症组和56名健康对照组 |
14555 | 2024-10-04 |
Predicting microbe-disease association based on graph autoencoder and inductive matrix completion with multi-similarities fusion
2024, Frontiers in microbiology
IF:4.0Q2
DOI:10.3389/fmicb.2024.1438942
PMID:39355422
|
研究论文 | 本文提出了一种基于图自编码器和归纳矩阵补全的多相似性融合方法,用于预测微生物与疾病之间的关联 | 通过多相似性融合策略改进了预测性能,并使用图自编码器和归纳矩阵补全技术构建了一个端到端的深度学习框架 | 未提及具体的局限性 | 旨在开发一种高效准确的方法来识别微生物与疾病之间的潜在关联 | 微生物与疾病之间的关联 | 机器学习 | NA | 图自编码器和归纳矩阵补全 | 深度学习模型 | 微生物与疾病关联数据 | 使用了3个数据集(HMDAD, Disbiome, 和 multiMDA) |
14556 | 2024-10-04 |
Forbidden Neurds: A Neuroscience Word Game
2024, Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience
DOI:10.59390/PAHQ2595
PMID:39355667
|
research paper | 本文介绍了一种基于游戏的神经科学词汇学习工具的开发、实施和评估 | 设计了一种名为Forbidden Neurds的卡牌游戏,通过禁止使用特定词汇来帮助学生更好地掌握神经科学术语 | NA | 研究基于游戏的学习方法在神经科学课程中的应用效果 | 神经科学课程中的学生 | NA | NA | NA | NA | NA | 在一个小型公立文理学院的200级神经科学基础课程中进行了评估,涉及的学生数量未明确提及 |
14557 | 2024-10-04 |
Deep learning quantification reveals a fundamental prognostic role for ductular reaction in biliary atresia
2023-12-01, Hepatology communications
IF:5.6Q1
DOI:10.1097/HC9.0000000000000333
PMID:38051554
|
研究论文 | 使用神经网络量化胆道闭锁中的导管反应(DR),并探讨其与病理生理和预后的关系 | 首次使用神经网络模型量化胆道闭锁中的导管反应,并发现其与预后的关联 | 样本量相对较小,且仅限于胆道闭锁患者 | 量化胆道闭锁中的导管反应,并探讨其与病理生理和预后的关系 | 胆道闭锁患者的肝脏活检样本 | 数字病理 | 胆道疾病 | 神经网络模型 | 神经网络 | 图像 | 259例胆道闭锁患者和43例对照组的肝脏活检样本 |
14558 | 2024-10-04 |
Validation of a Deep Learning Algorithm for Continuous, Real-Time Detection of Atrial Fibrillation Using a Wrist-Worn Device in an Ambulatory Environment
2023-10-03, Journal of the American Heart Association
IF:5.0Q1
DOI:10.1161/JAHA.123.030543
PMID:37750558
|
研究论文 | 本文验证了一种基于卷积神经网络的腕戴设备在连续实时检测房颤中的性能 | 首次在腕戴设备中实现了连续实时房颤检测,并具有临床级别的性能 | 研究样本量较小,且仅限于阵发性房颤患者 | 验证腕戴设备在连续实时房颤检测中的临床应用潜力 | 腕戴设备、卷积神经网络、房颤检测 | 机器学习 | 心血管疾病 | 卷积神经网络 | 卷积神经网络 | 心电图数据 | 117名阵发性房颤患者 |
14559 | 2024-10-04 |
Predicting Prostate Cancer Molecular Subtype With Deep Learning on Histopathologic Images
2023-Oct, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2023.100247
PMID:37307876
|
研究论文 | 本文利用深度学习算法在组织病理学图像上预测前列腺癌的分子亚型 | 本文提出了一种基于transformer的分层架构,用于从H&E染色的全切片图像中识别前列腺癌中的ERG融合和PTEN缺失 | 本文未详细讨论模型的泛化能力和在不同数据集上的表现 | 开发一种能够通过组织病理学图像预测前列腺癌分子亚型的深度学习算法 | 前列腺癌中的ERG融合和PTEN缺失 | 数字病理学 | 前列腺癌 | 深度学习 | Transformer | 图像 | 224例ERG融合和205例PTEN缺失的前列腺癌样本 |
14560 | 2024-10-04 |
Automated Triage of Screening Breast MRI Examinations in High-Risk Women Using an Ensemble Deep Learning Model
2023-10-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000000976
PMID:37058323
|
研究论文 | 研究开发并评估了一种深度学习模型,用于在无漏诊癌症的情况下对高风险女性的乳腺MRI检查进行分类 | 提出了一种自动化的深度学习模型,能够在不漏诊癌症的情况下对乳腺MRI检查进行分类,并可能用于减少工作量 | 模型在独立使用时可能不适用于所有情况,更适合作为分流工具或基础模型 | 开发和评估一种深度学习模型,用于对高风险女性的乳腺MRI检查进行分类,以减少工作量并提高诊断效率 | 高风险女性的乳腺MRI检查 | 计算机视觉 | 乳腺癌 | 深度学习 | 深度学习模型 | 图像 | 16,535次连续的对比增强MRI检查,涉及8354名女性 |