深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32372 篇文献,本页显示第 14761 - 14780 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
14761 2025-03-28
Development of a cryptocurrency price prediction model: leveraging GRU and LSTM for Bitcoin, Litecoin and Ethereum
2025, PeerJ. Computer science
research paper 该研究开发了一种利用GRU和LSTM模型预测比特币、莱特币和以太坊价格的加密货币价格预测模型 比较了GRU和LSTM在加密货币价格预测中的表现,发现GRU模型优于LSTM 未考虑社交媒体趋势和交易量等可能影响加密货币价格的其他变量 开发高精度的加密货币价格预测模型 比特币(BTC)、莱特币(LTC)和以太坊(ETH)三种主要加密货币 machine learning NA NA GRU, LSTM time-series data 历史价格数据来自CryptoDataDownload,按80:20的比例划分训练集和测试集 NA NA NA NA
14762 2025-03-28
Bone density measurement in patients with spinal metastatic tumors using chest quantitative CT deep learning model
2024-Dec, Journal of bone oncology IF:3.1Q2
研究论文 本研究开发了一种基于3DResUNet架构的深度学习模型,用于从定量计算机断层扫描(QCT)中预测脊柱转移瘤患者的椎体体积骨密度(vBMD) 使用3DResUNet架构的深度学习模型首次应用于脊柱转移瘤患者的vBMD预测,提高了骨质疏松筛查的能力 研究样本量有限(749例),且仅针对脊柱转移瘤患者,可能不适用于其他人群 开发一种深度学习模型,用于预测脊柱转移瘤患者的椎体体积骨密度(vBMD),以增强骨质疏松筛查能力 脊柱转移瘤患者 数字病理学 脊柱转移瘤 定量计算机断层扫描(QCT) 3DResUNet 医学影像 749例脊柱转移瘤患者(训练集599例,测试集150例) NA NA NA NA
14763 2025-10-07
Assessing deep learning reconstruction for faster prostate MRI: visual vs. diagnostic performance metrics
2024-Nov, European radiology IF:4.7Q1
研究论文 评估深度学习重建在前列腺MRI加速扫描中的视觉质量与诊断性能差异 将诊断性AI纳入评估框架,提供临床相关指标来评估重建模型的诊断质量 回顾性研究,需要大型读者研究来全面评估诊断影响 评估深度学习MRI重建在加速前列腺扫描中的诊断质量 1535名患者的前列腺MRI数据和临床显著前列腺癌病变 医学影像分析 前列腺癌 MRI, 深度学习重建 深度学习模型 医学影像 1535名患者 NA NA pAUC, FROC, SSIM, Cohen's kappa NA
14764 2025-03-28
Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter study
2024-Nov, European radiology IF:4.7Q1
研究论文 开发基于纵向乳腺超声和超声医师腋窝超声诊断的深度学习放射组学模型,用于预测乳腺癌新辅助化疗后腋窝淋巴结反应 结合纵向超声图像和深度学习特征,开发融合模型以预测腋窝淋巴结反应,性能优于传统超声医师诊断 研究局限于三个中心的数据,样本量可能不足以代表广泛人群 预测乳腺癌患者新辅助化疗后腋窝淋巴结的反应 乳腺癌患者 数字病理学 乳腺癌 超声成像,深度学习放射组学 随机森林,支持向量机 超声图像 2016年11月至2022年12月间三个中心招募的乳腺癌患者 NA NA NA NA
14765 2025-03-28
Message-Passing Monte Carlo: Generating low-discrepancy point sets via graph neural networks
2024-Oct, Proceedings of the National Academy of Sciences of the United States of America IF:9.4Q1
研究论文 本文提出了一种名为消息传递蒙特卡洛(MPMC)的新型低差异点集生成方法,利用图神经网络工具实现 首次将几何深度学习方法应用于低差异点集生成,提出MPMC点集并在低维和小点数情况下达到最优或接近最优差异 目前主要适用于低维和小规模点集的情况 开发更有效的低差异点集生成方法以提高数值积分、计算机视觉等领域的性能 低差异点集的生成方法 机器学习 NA 几何深度学习 图神经网络(GNN) 空间点集数据 低维和小规模点集 NA NA NA NA
14766 2025-03-28
Using deep learning to improve the intelligibility of a target speaker in noisy multi-talker environments for people with normal hearing and hearing loss
2024-07-01, The Journal of the Acoustical Society of America IF:2.1Q1
研究论文 本研究开发了一种基于深度学习的算法,用于在嘈杂的多说话者环境中提取目标说话者的声音,以提高正常听力和听力损失人群的语音可懂度 提出了一种准因果深度学习算法,能够根据简短的注册话语从多个并发说话者和背景噪声中提取目标说话者的声音,且该算法能泛化到未见过的说话者、不同说话者数量和相对说话者水平以及不同的语音语料库 算法在更复杂或不同的噪声环境中的表现尚未验证 提高嘈杂多说话者环境中的语音可懂度 正常听力和听力损失人群 机器学习 听力损失 深度学习 NA 语音 正常听力和听力损失听众参与的双盲句子识别测试 NA NA NA NA
14767 2025-10-07
Developing deep learning-based strategies to predict the risk of hepatocellular carcinoma among patients with nonalcoholic fatty liver disease from electronic health records
2024-04, Journal of biomedical informatics IF:4.0Q2
研究论文 本研究开发了基于深度学习的策略来预测非酒精性脂肪肝患者患肝细胞癌的风险 提出了处理电子健康记录中延迟诊断问题的后向掩码方案,并系统评估了时间变化协变量、数据稀缺和协变量不平衡对深度学习性能的影响 研究主要基于结构化电子健康记录数据,可能未考虑非结构化临床数据 提高非酒精性脂肪肝患者肝细胞癌风险预测的准确性 非酒精性脂肪肝患者 机器学习 肝细胞癌, 非酒精性脂肪肝 电子健康记录分析 深度学习 结构化电子健康记录 220,838名非酒精性脂肪肝患者 NA NA NA NA
14768 2025-10-07
Extracting Drug-Protein Relation from Literature Using Ensembles of Biomedical Transformers
2024-Jan-25, Studies in health technology and informatics
研究论文 本文提出基于生物医学Transformer模型的集成方法,用于从生物医学文献中自动提取药物-蛋白质关系 采用在生物医学数据上预训练的Transformer模型构建集成方法,在BioCreative-VII DrugProt任务中取得优异表现 未详细讨论模型在不同类型药物-蛋白质关系上的性能差异 开发自动从生物医学文献中提取药物-蛋白质关系的方法 PubMed摘要中的药物/化学物质与蛋白质实体关系 自然语言处理 NA 文本挖掘 Transformer 文本 主要语料库10,750篇摘要,大规模语料库240万篇文档 NA 生物医学Transformer模型 F1-score NA
14769 2025-10-07
Use of the deep learning approach to measure alveolar bone level
2022-03, Journal of clinical periodontology IF:5.8Q1
研究论文 开发了一种基于深度学习的方法,通过牙周X线片测量牙槽骨水平以辅助牙周诊断 整合了三个分割网络(骨区域、牙齿、釉牙骨质界)和图像分析来测量放射线骨水平并分配放射线骨丧失分期 模型需要进一步优化并通过更多图像验证以促进其应用 使用深度卷积神经网络测量放射线牙槽骨水平以辅助牙周诊断 牙周X线片中的牙槽骨 计算机视觉 牙周病 放射线成像 CNN 图像 NA NA NA Dice相似系数, AUC, 准确率 NA
14770 2025-10-07
Deep representation learning of patient data from Electronic Health Records (EHR): A systematic review
2021-03, Journal of biomedical informatics IF:4.0Q2
系统综述 本文对使用深度学习从电子健康记录中学习患者表示的研究进行了系统性回顾和方法学分析 首次从方法学角度对患者表示学习领域进行系统和定量分析,揭示了该领域的发展趋势和技术特点 纳入研究主要关注单一疾病预测,缺乏对患者复杂机制的整体考量,且多数研究因隐私问题缺乏基准数据集 系统回顾和分析基于电子健康记录的患者表示学习方法 从五个数据库筛选出的49篇相关研究论文 自然语言处理 NA 深度学习 RNN, LSTM, GRU 电子健康记录 49篇研究论文 NA 循环神经网络, 长短期记忆网络, 门控循环单元 交叉熵损失 NA
14771 2025-02-12
Response to Letter to the Editor Regarding: Multimodal Deep Learning-Based Radiomics Approach for Predicting Surgical Outcomes in Patients With Cervical Ossification of the Posterior Longitudinal Ligament
2025-Apr-15, Spine IF:2.6Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
14772 2025-10-07
Neoadjuvant Chemotherapy Response in Triple-Negative Apocrine Carcinoma: Comparing Apocrine Morphology, Androgen Receptor, and Immune Phenotypes
2025-Apr-01, Archives of pathology & laboratory medicine IF:3.7Q1
研究论文 本研究评估了三阴性乳腺癌对新辅助化疗的反应,并分析了顶浆分泌形态、雄激素受体状态和肿瘤浸润淋巴细胞的影响 首次在TNBC中系统比较顶浆分泌形态、AR表达和免疫表型对NAC反应的预测价值,并采用深度学习模型量化TILs 单中心回顾性研究,样本量有限,顶浆分泌形态亚型病例数较少 评估三阴性乳腺癌对新辅助化疗的反应及其预测因素 232例接受新辅助化疗后手术切除的三阴性乳腺癌患者 数字病理学 乳腺癌 免疫组织化学,深度学习 深度学习模型 病理图像,临床数据 232例TNBC患者 NA NA 病理完全缓解率,P值 NA
14773 2025-10-07
Multi-type stroke lesion segmentation: comparison of single-stage and hierarchical approach
2025-Apr, Medical & biological engineering & computing IF:2.6Q3
研究论文 本研究比较了单阶段和分层方法在脑部CT扫描中多类型卒中病灶分割的性能 首次系统比较单阶段直接分割与分层分类后分割两种方法在多类型卒中病灶分割中的表现 数据集仅来自单一国家机构,可能影响模型泛化能力 开发有效的多类型卒中病灶自动分割方法以辅助临床决策 脑部CT扫描图像中的缺血性和出血性卒中病灶 计算机视觉 卒中 CT扫描 CNN, Transformer 医学图像 6650张图像(1130例缺血性卒中,1093例出血性卒中,4427例非卒中) PyTorch, TensorFlow ResNet, ResNeXt, ViT, U-Net, U-Net++, DeepLabV3 AUC, IoU NA
14774 2025-03-27
Deep learning-based prediction of Monte Carlo dose distribution for heavy ion therapy
2025-Apr, Physics and imaging in radiation oncology
研究论文 提出了一种基于深度学习的模型,用于快速预测重离子治疗中的蒙特卡洛模拟剂量分布 开发了Cascade Hierarchically Densely 3D U-Net (CHD U-Net)模型,能够在几秒钟内预测蒙特卡洛剂量分布,且准确率高于现有方法 样本量相对较小,仅包含67例头颈患者和30例胸腹患者 提高重离子治疗中剂量分布的预测准确性和计算效率 头颈和胸腹部位的重离子治疗患者 医学影像分析 癌症 深度学习 CHD U-Net CT图像和TPSDose数据 67例头颈患者和30例胸腹患者 NA NA NA NA
14775 2025-03-27
External validation of an algorithm to detect vertebral level mislabeling and autocontouring errors
2025-Apr, Physics and imaging in radiation oncology
research paper 该研究对外部验证了一种椎体自动轮廓工具的算法,并研究了一种后处理方法以提高其性能至临床可接受水平 开发了一种后处理技术,显著提高了椎体定位的准确性 在外部数据集上的性能相比原始训练数据集有所下降 验证和改进椎体自动轮廓工具的临床适用性 CT扫描中的椎体 digital pathology NA machine learning, deep learning NA CT scans 81例CT扫描(40例来自机构A,41例来自机构B) NA NA NA NA
14776 2025-03-27
ADAM: automated digital phenotyping and morphological texture analysis of bone biopsy images using deep learning
2025-Apr, JBMR plus IF:3.4Q2
研究论文 开发了一种名为ADAM的自动化流程,用于通过深度学习对骨活检图像进行数字表型分析和形态纹理分析 ADAM流程能够快速生成组织与细胞图谱,并在无需额外染色的情况下,通过亮场显微镜图像进行骨细胞计数 对于形态异质性较高的骨细胞计数,如破骨细胞和成骨细胞,其相关系数相对较低 提高骨活检图像分析的自动化程度和准确性,以改善病理工作流程和诊断洞察 未脱钙骨活检图像中的组织与细胞成分 数字病理学 骨病 深度学习 NA 图像 最多20张图像 NA NA NA NA
14777 2025-03-27
High-dimensional imaging using combinatorial channel multiplexing and deep learning
2025-Mar-25, Nature biotechnology IF:33.1Q1
research paper 介绍了一种名为CombPlex的组合染色平台和算法框架,通过深度学习技术显著增加可测量的蛋白质数量 提出组合多路复用技术(CombPlex),通过组合染色和深度学习算法,将22种蛋白质的染色压缩至5个成像通道,实现准确重建 未提及具体的技术实施难度或在实际应用中的潜在问题 开发一种能够量化多种蛋白质在单细胞分辨率下的表达并保留空间信息的成像技术 多种组织和癌症类型中的蛋白质表达 digital pathology cancer 组合染色平台(CombPlex)和深度学习算法 深度学习 图像 涉及多种组织和癌症类型,但未提及具体样本数量 NA NA NA NA
14778 2025-03-27
A statistical method for high-throughput emergence rate calculation for soybean breeding plots based on field phenotypic characteristics
2025-Mar-24, Plant methods IF:4.7Q1
research paper 本研究提出了一种基于无人机和地面测量数据的高通量大豆出苗率统计方法,旨在提高密集种植环境下育种筛选的效率和准确性 结合背景分割、深度学习目标检测和生长归一化思想,提出了一种新的高通量大豆出苗率统计方法,解决了现有方法在密集环境下的低通量、低效率和精度不足问题 方法在极端密集或高度重叠的种植环境下可能仍存在计数误差 开发一种高效、精确的大豆出苗率统计方法,以加速育种筛选过程 密集种植环境下的大豆幼苗 digital agriculture NA 无人机遥感成像、深度学习目标检测 Yolov8n 遥感图像 未明确说明具体样本数量,但涉及密集种植环境下的大豆幼苗图像数据 NA NA NA NA
14779 2025-03-27
Construction and validation of a risk stratification model based on Lung-RADS® v2022 and CT features for predicting the invasive pure ground-glass pulmonary nodules in China
2025-Mar-23, Insights into imaging IF:4.1Q1
研究论文 基于Lung-RADS® v2022和CT特征构建并验证了一种用于预测中国纯磨玻璃肺结节侵袭性的风险分层模型 结合Lung-RADS® v2022框架和GGN-血管关系类型(GVR),建立了补充性cLung-RADS® v2022模型,显著提高了对纯磨玻璃结节侵袭性的预测性能 研究样本量相对有限(526例患者,572个肺结节),且仅在中国人群中进行验证 开发并验证一种改进的风险分层模型,用于预测纯磨玻璃肺结节的侵袭性 纯磨玻璃肺结节(pGGNs) 数字病理学 肺癌 CT成像 cLung-RADS® v2022 医学影像 526名患者(共572个肺结节),分为训练集(169例)和验证集(403例) NA NA NA NA
14780 2025-03-27
Prolonged water body types dataset of urban agglomeration in central China from 1990 to 2021
2025-Mar-22, Scientific data IF:5.8Q1
research paper 该研究利用Landsat卫星数据和弱监督深度学习技术,生成了1990-2021年间长江中游城市群多种内陆水体的年度地图 采用弱监督深度学习技术进行长期水体类型制图,并提供了高精度、长时间跨度的水体分类系统 NA 为水资源管理和湿地保护提供数据支持 长江中游城市群的内陆水体 machine learning NA 弱监督深度学习 NA 卫星图像 14000个验证点 NA NA NA NA
回到顶部