深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24644 篇文献,本页显示第 14861 - 14880 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
14861 2024-10-08
An adaptive weight ensemble approach to forecast influenza activity in an irregular seasonality context
2024-Oct-04, Nature communications IF:14.7Q1
研究论文 本文开发了一种自适应权重集成方法,用于预测香港等热带和亚热带地区的不规则季节性流感活动 提出了自适应权重混合集成模型(AWBE),动态更新模型贡献,显著提高了预测准确性 NA 开发和比较不同模型在预测流感活动中的表现,特别是在不规则季节性的地区 香港地区的流感活动 机器学习 流感 NA 集成模型 时间序列数据 32次流行病,时间跨度为1998年至2019年
14862 2024-10-08
Meta-learning for real-world class incremental learning: a transformer-based approach
2024-Oct-04, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于Transformer的元学习方法,用于解决现实世界中的类增量学习问题 本文的创新点在于将元学习应用于类增量学习,并提出了一种基于Transformer的聚合函数,能够在不重新训练的情况下完成任务 NA 本文的研究目的是将元学习应用于更贴近现实世界的类增量学习问题 本文的研究对象是类增量学习问题 自然语言处理 NA 元学习 Transformer 文本 NA
14863 2024-10-08
Advanced mathematical modeling of mitigating security threats in smart grids through deep ensemble model
2024-Oct-04, Scientific reports IF:3.8Q1
研究论文 研究通过深度集成模型进行高级数学建模,以减轻智能电网中的安全威胁 提出了一种基于山羚优化和深度集成学习的入侵检测技术(MGODEL-ID),用于智能电网环境中的入侵检测 NA 开发一种新的入侵检测技术,以提高智能电网对网络攻击的可靠性和韧性 智能电网中的安全威胁和入侵检测 机器学习 NA 深度学习 深度集成模型 网络数据 NA
14864 2024-10-08
Tabular deep learning: a comparative study applied to multi-task genome-wide prediction
2024-Oct-04, BMC bioinformatics IF:2.9Q1
研究论文 本文比较了多种深度学习架构在多任务全基因组预测中的应用 首次系统性地比较了多种深度学习架构在表格数据上的表现,并应用于全基因组预测 实验仅限于特定的基因数据集,结果可能不适用于所有类型的基因数据 提高基因选择和疾病风险预测的准确性 多种深度学习架构在全基因组预测中的表现 机器学习 NA 深度学习 LassoNet 表格数据 三个多特征回归数据集和两个多类分类数据集
14865 2024-10-08
Leveraging explainable deep learning methodologies to elucidate the biological underpinnings of Huntington's disease using single-cell RNA sequencing data
2024-Oct-04, BMC genomics IF:3.5Q2
研究论文 利用可解释深度学习方法解析亨廷顿病生物学基础的单细胞RNA测序数据 使用残差神经网络(ResNet)模型有效模拟亨廷顿病细胞,并利用SHapley Additive exPlanations(SHAP)算法识别影响亨廷顿病预测的基因 测试集的F1分数为96.53%,仍有提升空间 阐明亨廷顿病病理学的潜在机制 亨廷顿病细胞与健康细胞的差异基因表达模式 机器学习 神经退行性疾病 单细胞RNA测序 残差神经网络(ResNet) 基因表达数据 NA
14866 2024-10-08
The power of deep learning in simplifying feature selection for hepatocellular carcinoma: a review
2024-Oct-04, BMC medical informatics and decision making IF:3.3Q2
综述 本文综述了深度学习技术在肝细胞癌(HCC)特征选择中的应用 深度学习技术在简化HCC特征选择过程中展示了显著的进步 将深度学习的潜力转化为临床现实仍面临挑战 综述深度学习模型和算法在HCC特征选择中的应用,并讨论其在临床实践中的潜力 肝细胞癌(HCC)的特征选择 机器学习 肝癌 深度学习 NA NA NA
14867 2024-10-06
Development of brain tumor radiogenomic classification using GAN-based augmentation of MRI slices in the newly released gazi brains dataset
2024-Oct-04, BMC medical informatics and decision making IF:3.3Q2
研究论文 本文提出使用StyleGANv2-ADA模型对脑部MRI切片进行数据增强,以提高脑肿瘤分类模型的性能 首次在Gazi Brains 2020数据集上使用StyleGANv2-ADA进行数据增强,显著提高了脑肿瘤分类的准确率 NA 提高脑肿瘤分类模型的准确性 脑肿瘤的分类 计算机视觉 脑肿瘤 StyleGANv2-ADA GAN 图像 使用了Gazi Brains 2020、BRaTS 2021和Br35h数据集
14868 2024-10-08
Deep learning to estimate response of concurrent chemoradiotherapy in non-small-cell lung carcinoma
2024-Oct-04, Journal of translational medicine IF:6.1Q1
研究论文 本文构建了一个深度学习模型,用于预测非小细胞肺癌患者在接受同步放化疗后的反应 首次使用深度学习模型预测非小细胞肺癌患者对同步放化疗的反应,并探索了相关的生物信号通路 NA 开发和验证一个深度学习模型,用于预测非小细胞肺癌患者在接受同步放化疗后的反应 非小细胞肺癌患者及其在接受同步放化疗后的反应 机器学习 肺癌 深度学习 ResNet50 图像 229名非小细胞肺癌患者
14869 2024-10-08
Artificial intelligence and telemedicine in epilepsy and EEG: A narrative review
2024-Oct, Seizure
综述 本文综述了人工智能和远程医疗在癫痫和脑电图诊断与管理中的应用 人工智能通过机器学习和深度学习提高了脑电图解释和癫痫发作预测的准确性 技术应用受到设备兼容性、临床工作流程整合、数据偏差和数据可用性等限制 探讨人工智能和远程医疗在癫痫和脑电图护理中的应用及其对未来癫痫护理的影响 癫痫患者和脑电图数据 机器学习 癫痫 机器学习 卷积神经网络 (CNN) 脑电图 (EEG) NA
14870 2024-10-08
Artificial intelligence-based differential diagnosis of orbital MALT lymphoma and IgG4 related ophthalmic disease using hematoxylin-eosin images
2024-Oct, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
研究论文 研究使用人工智能和苏木精-伊红染色图像区分IgG4相关眼病和眼眶MALT淋巴瘤的可能性 开发了一种基于深度学习的人工智能软件,能够区分IgG4相关眼病和眼眶MALT淋巴瘤 样本量较小,且仅限于IgG4相关眼病和眼眶MALT淋巴瘤的区分 探讨使用人工智能和苏木精-伊红染色图像区分IgG4相关眼病和眼眶MALT淋巴瘤的可能性 IgG4相关眼病和眼眶MALT淋巴瘤 数字病理学 淋巴瘤 深度学习 EVA 图像 127名患者,其中97名用于模型构建,30名用于模型评估
14871 2024-10-08
Evaluating a Natural Language Processing-Driven, AI-Assisted International Classification of Diseases, 10th Revision, Clinical Modification, Coding System for Diagnosis Related Groups in a Real Hospital Environment: Algorithm Development and Validation Study
2024-Sep-20, Journal of medical Internet research IF:5.8Q1
研究论文 评估基于自然语言处理和人工智能的国际疾病分类第10版临床修改版编码系统在实际医院环境中的算法开发和验证 开发了一种基于自然语言处理和深度学习模型的AI辅助编码系统,用于自动确定诊断和代码,以提高编码效率和准确性 研究仅在一家医院进行,样本量有限,可能影响结果的普适性 评估基于自然语言处理的AI辅助编码系统在实际医院环境中自动确定诊断和代码的可行性 国际疾病分类第10版临床修改版编码系统在诊断相关分组中的应用 自然语言处理 NA 自然语言处理 GPT-2 文本 使用高雄医学大学中和纪念医院2019年4月至2020年12月的患者出院总结作为参考数据集,以及2023年2月至4月的实际医院数据
14872 2024-10-08
Neural Conversational Agent for Weight Loss Counseling: Protocol for an Implementation and Feasibility Study
2024-Sep-20, JMIR research protocols IF:1.4Q3
研究论文 本文探讨了使用基于大型语言模型(LLM)的神经对话代理NAOMI进行体重管理咨询的可行性研究 本文首次提出使用基于LLM的神经对话代理NAOMI进行体重管理咨询,旨在克服传统咨询师培训成本高和时间长的限制 研究尚未完成,数据收集预计在2025年5月结束,目前无法评估其长期效果和广泛应用的可行性 探索使用神经对话代理NAOMI进行体重管理咨询的可行性,并测试其接受度和使用性 超重和肥胖患者,招募自初级保健诊所 机器学习 肥胖 深度学习 大型语言模型(LLM) 文本 10名18-65岁超重或肥胖患者(BMI≥25.0且≤39.9)
14873 2024-10-08
A systematic review of deep learning-based spinal bone lesion detection in medical images
2024-Sep, Acta radiologica (Stockholm, Sweden : 1987)
综述 本文系统回顾了基于深度学习的医学图像中脊柱骨病变检测的研究进展 本文不仅描述了这些模型在脊柱骨恶性病变识别中的诊断性能和不同方法,还指出了当前缺乏标准化方法和报告的问题 大多数研究存在重大局限性,如模型统计和数据获取报告不足、缺乏外部验证数据集以及可能的偏倚注释 探讨深度学习模型在脊柱骨病变检测中的应用及其局限性 脊柱骨病变及其在医学图像中的检测 计算机视觉 NA 深度学习 NA 图像 14项研究
14874 2024-10-08
Enhancing schizophrenia phenotype prediction from genotype data through knowledge-driven deep neural network models
2024-Sep, Genomics IF:3.4Q2
研究论文 本文探讨了利用深度学习模型设计来提高从基因型数据预测精神分裂症表型的方法 引入了一种创新的三步方法,利用神经网络的能力有效处理基因相互作用,并通过知识驱动的深度神经网络模型增强预测能力 NA 提高从基因型数据预测精神分裂症表型的准确性 精神分裂症的基因型数据 机器学习 精神疾病 深度学习 神经网络 基因型数据 NA
14875 2024-10-08
Recurrent Inference Machine for Medical Image Registration
2024-Jun-19, ArXiv
PMID:39371087
研究论文 本文提出了一种名为Recurrent Inference Image Registration (RIIR)网络的新型图像配准方法,旨在提高配准精度和数据效率 RIIR通过元学习的方式迭代地解决配准问题,结合隐式正则化和显式梯度输入,学习优化更新规则,从而提高配准精度和数据效率 NA 提高医学图像配准的精度和数据效率 脑部MRI和定量心脏MRI数据集 计算机视觉 NA 深度学习 RNN 图像 使用5%的训练数据进行实验
14876 2024-10-08
Location-based Radiology Report-Guided Semi-supervised Learning for Prostate Cancer Detection
2024-Jun-18, ArXiv
PMID:39371085
研究论文 提出了一种基于放射报告中的病变位置信息指导的半监督学习方法,用于前列腺癌的检测 利用放射报告中自动提取的病变位置信息,通过半监督学习方法减少对标注图像的依赖,从而降低标注负担 NA 提高计算机辅助前列腺癌在MRI上的检测效果 前列腺癌的检测 计算机视觉 前列腺癌 半监督学习 NA 图像 NA
14877 2024-10-08
Uncertainty-Aware Active Domain Adaptive Salient Object Detection
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society IF:10.8Q1
研究论文 提出了一种新的成本效益高的显著目标检测框架,通过有限数量的主动选择的注释,将模型从合成数据适应到真实世界数据 设计了一种不确定性感知的主动域适应算法,用于生成真实世界目标图像的标签,并利用数据增强的预测方差计算超像素级别的不确定性值 NA 减轻数据标注的负担,提高显著目标检测的性能 显著目标检测模型 计算机视觉 NA 深度学习 NA 图像 六个基准显著目标检测数据集
14878 2024-10-08
The Value of Topological Radiomics Analysis in Predicting Malignant Risk of Pulmonary Ground-Glass Nodules: A Multi-Center Study
2024 Jan-Dec, Technology in cancer research & treatment IF:2.7Q3
研究论文 本研究探讨了拓扑放射组学分析在预测肺部磨玻璃结节恶性风险中的应用 本研究创新性地将拓扑数据分析与纹理分析相结合,开发了基于同调的拓扑特征,显著提高了模型的区分能力 本研究为回顾性分析,未来需要进行前瞻性研究以进一步验证模型的有效性 旨在通过拓扑放射组学分析提高肺部磨玻璃结节恶性风险的预测准确性 肺部磨玻璃结节 数字病理学 肺癌 放射组学分析 机器学习与深度学习算法 影像 3223名患者
14879 2024-10-08
Three-dimensional label-free morphology of CD8 + T cells as a sepsis biomarker
2023-Nov-07, Light, science & applications
研究论文 研究探讨了三维无标记CD8+ T细胞形态作为脓毒症生物标志物的潜力 首次提出三维无标记CD8+ T细胞形态作为脓毒症的生物标志物,并开发了深度学习模型进行预测 样本量较小,仅包括8名脓毒症恢复患者和20名健康对照 研究三维无标记CD8+ T细胞形态作为脓毒症诊断和预后生物标志物的潜力 脓毒症患者和健康对照的CD8+ T细胞形态 数字病理学 脓毒症 深度学习 深度学习模型 细胞形态 8名脓毒症恢复患者和20名健康对照
14880 2024-10-08
Can Deep Adult Lung Segmentation Models Generalize to the Pediatric Population?
2023-Nov-01, Expert systems with applications IF:7.5Q1
研究论文 本文研究了深度成人肺分割模型在儿科人群中的泛化能力,并提出了一种改进性能的方法 提出了新的评估指标MLCD和AHS,并采用分阶段系统方法通过CXR模态特定的权重初始化、堆叠集成和集成堆叠集成来提高性能 NA 分析深度成人肺分割模型在儿科人群中的泛化能力,并提出改进方法 成人肺分割模型在儿科人群中的应用 计算机视觉 NA 深度学习 CNN 图像 NA
回到顶部