本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15061 | 2024-08-05 |
Deep learning for predicting 16S rRNA gene copy number
2024-06-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-64658-5
PMID:38902329
|
研究论文 | 本研究提出了一种基于深度学习的方法ANNA16,用于直接从16S基因序列中估计16S rRNA基因拷贝数。 | 提出了一种新的方法ANNA16,能够直接从16S基因序列中进行16S GCN值的估计,且表现优于常用算法。 | 目前未提及研究中的具体局限性 | 研究的目的是提高微生物组分析中16S rRNA基因拷贝数的量化估计能力。 | 研究对象为不同社区成员的16S rRNA基因拷贝数。 | 数字病理学 | NA | 深度学习 | 人工神经网络 | 基因序列 | 27,579个16S rRNA基因序列 |
15062 | 2024-08-05 |
Leveraging data science and machine learning for urban climate adaptation in two major African cities: a HE2AT Center study protocol
2024-Jun-18, BMJ open
IF:2.4Q1
DOI:10.1136/bmjopen-2023-077529
PMID:38890141
|
研究论文 | 该研究旨在了解非洲城市中与热相关的健康影响复杂性 | 创新点在于综合健康、社会经济、气候和卫星影像数据来映射城市热风险,并建立热健康预测模型和预警系统 | 该研究主要集中于两座城市,可能无法广泛适用于其他地区 | 研究目的是促进非洲城市的气候适应能力,保护受到热危害不成比例影响的人群 | 研究对象包括在约翰内斯堡和阿比让进行的成人临床试验或队列研究的健康相关数据集 | 机器学习 | NA | 统计评估、机器学习和深度学习技术 | NA | 健康、社会经济、气候和卫星影像数据 | 2000年至2022年在约翰内斯堡和阿比让的成人临床试验或队列研究的健康数据 |
15063 | 2024-08-05 |
Deep Learning-Based HLA Allele Imputation Applicable to GWAS
2024, Methods in molecular biology (Clifton, N.J.)
DOI:10.1007/978-1-0716-3874-3_5
PMID:38907891
|
研究论文 | 本文介绍了一种基于深度学习的HLA等位基因填充方法Deep*HLA | 该方法采用深度学习算法,显著提高了HLA等位基因的填充精度和计算效率 | 对于稀有等位基因的填充精度有所下降 | 旨在提高HLA基因的等位基因填充准确性,以更好地理解人类特征的遗传基础 | 关注HLA等位基因的填充,基于区域性单核苷酸变异进行分析 | 机器学习 | NA | 深度学习 | NA | NA | 在两个不同谱系的参考面板上进行训练和基准测试 |
15064 | 2024-08-05 |
Intelligent deep learning supports biomedical image detection and classification of oral cancer
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-248041
PMID:38759069
|
研究论文 | 本文提出了一种有效并准确的口腔癌识别与分类方法 | 提出了一种新的CANet分类模型,结合了注意机制和位置忽略信息,探索了注意机制与深度网络的复杂组合 | NA | 研究口腔癌的识别和分类技术 | 口腔癌图像数据集的分类 | 计算机视觉 | 口腔癌 | 深度学习,CNN和Swin变换 | CANet和Swin transformer | 图像 | Kaggle口腔癌图像数据集 |
15065 | 2024-08-05 |
Designing and development of agricultural rovers for vegetable harvesting and soil analysis
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0304657
PMID:38905232
|
研究论文 | 本研究提出了一种能够自主进行蔬菜采摘和土壤分析的农业机器人 | 使用先进的深度学习算法(YOLOv5)来提高农业效率和土壤健康 | 研究中未提及样本的多样性和环境条件的影响 | 旨在开发可持续农业技术以提升作物生产力和土壤健康 | 农业机器人及其在蔬菜采摘和土壤分析中的应用 | 计算机视觉 | NA | YOLOv5 | 深度学习模型 | 图像 | NA |
15066 | 2024-08-05 |
A deep learning approach for acute liver failure prediction with combined fully connected and convolutional neural networks
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-248048
PMID:38759076
|
研究论文 | 本文提出了一种结合全连接和卷积神经网络的深度学习方法用于急性肝衰竭预测 | 创新点在于结合了全连接神经网络和卷积神经网络,以提高传统机器学习方法在预测急性肝衰竭中的性能和泛化能力 | 模型的鲁棒性和针对不平衡数据的能力仍需进一步改进 | 研究旨在通过深度学习提高急性肝衰竭预测的准确性和有效性 | 研究对象是急性肝衰竭患者及其相关临床数据 | 机器学习 | 肝病 | 深度学习 | 全连接神经网络和卷积神经网络 | 临床数据 | NA |
15067 | 2024-08-05 |
Deep learning-based anatomical position recognition for gastroscopic examination
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-248004
PMID:38669495
|
研究论文 | 该研究使用深度学习开发了用于胃镜检查的自动位置识别技术 | 提出了一种新的方法MogaNet,比现有模型在解剖位置识别上表现更优秀 | 未提及特定限制因素 | 利用深度学习技术提高胃镜检查中的解剖位置识别 | 17182张不同解剖位置的胃镜图像 | 计算机视觉 | NA | 卷积神经网络 | MogaNet | 图像 | 17182张 |
15068 | 2024-08-05 |
Biclustering for Epi-Transcriptomic Co-functional Analysis
2024, Methods in molecular biology (Clifton, N.J.)
DOI:10.1007/978-1-0716-3918-4_19
PMID:38907925
|
研究论文 | 本文描述了多种二聚类挖掘算法,以发现表观转录组数据中的潜在共同功能模式 | 介绍了将新的深度学习技术引入表观转录组数据共同功能分析领域 | NA | 深入研究N-甲基腺苷(mA)修饰在表观转录组数据中的共同功能模式 | 表观转录组数据中的mA修饰及其共同功能模式 | 数字病理学 | NA | 深度学习 | NA | 表观转录组数据 | NA |
15069 | 2024-08-05 |
Deep learning approaches for breast cancer detection in histopathology images: A review
2024, Cancer biomarkers : section A of Disease markers
IF:2.2Q3
DOI:10.3233/CBM-230251
PMID:38517775
|
综述 | 本文综述了使用深度学习技术对乳腺癌进行检测的最新技术现状 | 本文强调了深度学习算法在乳腺癌检测中的潜力,并讨论了不同架构在多种数据集上的表现 | 本文提到需要大量多样化的数据集及深度学习模型的可解释性作为挑战 | 本文旨在提供乳腺癌检测领域的最新技术和研究概况 | 本文研究对象为乳腺癌与组织病理图像的深度学习检测和分类 | 数字病理学 | 乳腺癌 | 深度学习 | NA | 组织病理图像 | NA |
15070 | 2024-08-05 |
Offensive language detection in low resource languages: A use case of Persian language
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0304166
PMID:38905214
|
研究论文 | 本文探讨了波斯语中攻击性语言检测的问题并提出了一种新的语料库 | 开发了包含6,000条动态博客帖子的新波斯语攻击性语言语料库,并提出了一种集成多个分类器的模型来改善检测效果 | 所使用的语料库主要集中在波斯语,可能不适用于其他低资源语言 | 研究波斯语的攻击性语言自动检测问题 | 波斯语中的攻击性语言 | 自然语言处理 | NA | 机器学习,深度学习,变换器基础的神经网络 | SVM,单语变换器预训练语言模型 ParsBERT,集成模型 | 文本 | 6,000条从520,000个随机抽样的微博帖子中提取的样本 |
15071 | 2024-08-05 |
DeepHLApan: A Deep Learning Approach for the Prediction of Peptide-HLA Binding and Immunogenicity
2024, Methods in molecular biology (Clifton, N.J.)
DOI:10.1007/978-1-0716-3874-3_15
PMID:38907901
|
研究论文 | 本文介绍了一种名为DeepHLApan的深度学习工具,用于预测肽-HLA结合亲和力及免疫原性 | 创新点在于结合肽-HLA结合亲和力和免疫原性进行新抗原的预测 | NA | 研究旨在推动肿瘤新抗原的预测及其在癌症免疫治疗中的应用 | 研究对象为肽-HLA结合及其免疫原性 | 生物信息学 | 癌症 | 深度学习 | NA | NA | NA |
15072 | 2024-08-05 |
Deep Learning-Based Prediction of Radiation Therapy Dose Distributions in Nasopharyngeal Carcinomas: A Preliminary Study Incorporating Multiple Features Including Images, Structures, and Dosimetry
2024 Jan-Dec, Technology in cancer research & treatment
IF:2.7Q3
DOI:10.1177/15330338241256594
PMID:38808514
|
研究论文 | 本研究旨在通过将剂量信息纳入深层卷积神经网络(CNN)来提高对鼻咽癌放射治疗剂量分布的预测准确性 | 提出了一个新的框架,利用深度学习和多通道输入,特别纳入了目标顺应计划(TCPD)信息以增强预测准确性 | 在某些小体积或邻近的风险脏器(OAR)上预测结果可能存在显著差异,且未提及样本的多样性 | 提高鼻咽癌治疗中强度调制放射治疗(IMRT)的剂量分布预测准确性 | 鼻咽癌患者的放射治疗剂量分布 | 数字病理学 | 鼻咽癌 | 深度学习 | 卷积神经网络(CNN) | 图像、剂量分布信息、靶区结构及风险脏器信息 | NA |
15073 | 2024-08-05 |
Super-resolution of diffusion-weighted images using space-customized learning model
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-248037
PMID:38759065
|
研究论文 | 本研究开发了一种端到端的深度学习网络,以提高扩散加权成像(DWI)的空间分辨率 | 提出了一种空间定制的深度学习方法,结合了卷积神经网络和图卷积网络,以改善DWI的图像质量 | 对高维和非欧几何的DWI应用仍然具有挑战性 | 研究旨在通过后处理提高DWI的空间分辨率 | 本研究对象为扩散加权成像(DWI) | 计算机视觉 | NA | 深度学习 | CNN和GCNN | 图像 | 在人体连接组项目中评估 |
15074 | 2024-08-05 |
Intelligent quality control of traditional chinese medical tongue diagnosis images based on deep learning
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-248018
PMID:38759050
|
研究论文 | 本文提出了一种基于深度学习的图像质量控制算法,用于验证中医舌诊图像的合格性。 | 该研究利用ResNet34模型并通过迁移学习方法,达到97.06%的图像质量控制准确率,确保舌图像处理的后续分析。 | 研究并未涉及舌诊图像以外的其他中医诊断图像的质量控制。 | 研究旨在提高传统中医舌诊技术的标准化、客观化和量化水平。 | 研究对象为中医舌诊图片,分为五种状态。 | 数字病理学 | NA | 深度学习 | ResNet34 | 图像 | 大量图像样本 |
15075 | 2024-08-05 |
Applications of deep learning models in precision prediction of survival rates for heart failure patients
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-248029
PMID:38759059
|
研究论文 | 本研究使用Seq2Seq模型提高心力衰竭患者的死亡率预测精度 | 该研究首次将Seq2Seq模型与患者特征结合用于心力衰竭的死亡率精准预测,优于传统机器学习方法 | 未提及存在的局限性 | 利用Seq2Seq模型与患者特征进行心力衰竭死亡率的精准预测 | 心力衰竭患者的12个患者特征 | 机器学习 | 心血管疾病 | 深度学习 | Seq2Seq | 连续医疗记录 | NA |
15076 | 2024-08-05 |
Research on multi-defects classification detection method for solar cells based on deep learning
2024, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0304819
PMID:38905246
|
研究论文 | 提出一种基于深度学习的太阳能电池多缺陷分类检测方法 | 采用不同优化方法的深度学习模型和多模型融合的分类检测方法来提高太阳能电池表面缺陷的检测精度 | 没有提及模型在真实应用中的表现和其他类型缺陷的检测能力 | 提高太阳能电池制造过程中的缺陷检测精度和速度 | 太阳能电池表面的缺陷检测 | 计算机视觉 | NA | YOLOv5s, K-means, MobileNetV2 | YOLOv5s, MobileNetV2 | 图像 | NA |
15077 | 2024-08-05 |
Deep learning-based differentiation of ventricular septal defect from tetralogy of Fallot in fetal echocardiography images
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-248040
PMID:38759068
|
研究论文 | 本文探讨了使用深度学习技术区分胎儿超声图像中的室间隔缺损和法洛四联症 | 采用弱监督数据增强网络(WSDAN)在细粒度图像分类任务中表现最佳,显示了其在识别先天性心脏病中的潜力 | 研究可能受到样本数量的限制,只有105张TOF图像和96张VSD图像 | 提高对先天性心脏病的早期诊断能力 | 胎儿超声图像中的法洛四联症和室间隔缺损 | 计算机视觉 | 先天性心脏病 | 卷积神经网络(CNN) | VGG19, ResNet50, NTS-Net, WSDAN | 图像 | 共收集了201张图像,包括105张法洛四联症图像和96张室间隔缺损图像 |
15078 | 2024-08-05 |
Optimizing cardiovascular image segmentation through integrated hierarchical features and attention mechanisms
2024, Technology and health care : official journal of the European Society for Engineering and Medicine
IF:1.4Q3
DOI:10.3233/THC-248035
PMID:38759064
|
研究论文 | 本文介绍了一种深度学习方法用于自动化心血管图像分割 | 引入了创新的区域加权融合和形状特征细化模块,利用极化自注意力显著提高了多尺度特征集成和形状微调的性能 | NA | 研究心血管医学图像的自动分割技术 | 心血管图像 | 计算机视觉 | 心血管疾病 | 深度学习 | NA | 图像 | NA |
15079 | 2024-08-05 |
Machine learning in computational histopathology: Challenges and opportunities
2023-09, Genes, chromosomes & cancer
DOI:10.1002/gcc.23177
PMID:37314068
|
review | 文章回顾了机器学习在计算数字病理学中的应用及其挑战与机遇 | 提供了机器学习在数字病理学领域成功应用的背景和临床任务的自动化情况 | 未详细讨论特定机器学习模型的局限性和实际应用的障碍 | 探讨机器学习在数字病理学中的应用潜力和未来发展方向 | 数字病理学图像及其在癌症诊断和分期中的应用 | 数字病理学 | 癌症 | 机器学习,深度学习 | NA | 数字病理图像 | 大规模数字病理切片数据集 |
15080 | 2024-08-05 |
A multi-scale residual network for accelerated radial MR parameter mapping
2020-11, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2020.08.013
PMID:32882339
|
研究论文 | 提出了一种结合加速径向数据采集和多尺度残差网络的深度学习MR参数成像框架 | 提出的多尺度残差网络在使用加速径向数据的情况下,提供了高质量的对比加权图像和参数图,且重建时间减少两个数量级 | 在许多应用场景中无法获得完全采样的训练数据 | 研究加速径向数据采集的MR参数成像方法 | 针对不同解剖结构和弛豫参数,训练个别网络进行图像重建 | 数字病理学 | NA | 深度学习 | 多尺度残差网络(MS-ResNet) | 图像 | 脑部和膝盖数据集的体内T映射结果 |