本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15081 | 2024-09-30 |
PScL-HDeep: image-based prediction of protein subcellular location in human tissue using ensemble learning of handcrafted and deep learned features with two-layer feature selection
2021-11-05, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbab278
PMID:34337652
|
研究论文 | 本文提出了一种基于人类蛋白质图谱数据的新型计算方法PScL-HDeep,用于准确高效地预测人类组织中蛋白质的亚细胞定位 | 本文结合了手工特征和深度学习特征,并通过两层特征选择算法优化特征集,提高了预测的准确性和效率 | NA | 开发一种新的计算方法,用于准确预测人类组织中蛋白质的亚细胞定位 | 人类组织中蛋白质的亚细胞定位 | 计算机视觉 | NA | 支持向量机 | 支持向量机 | 图像 | 基于人类蛋白质图谱数据库构建的新金标准基准训练数据集 |
15082 | 2024-09-30 |
[Parkinson's disease diagnosis based on local statistics of speech signal in time-frequency domain]
2021-Feb-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
DOI:10.7507/1001-5515.202001024
PMID:33899424
|
研究论文 | 提出了一种基于时频域梯度统计的方法来分析帕金森病患者语音障碍 | 引入时频域梯度统计特征,相比传统特征和深度学习特征,在分类准确性、特异性和敏感性上表现更好 | NA | 开发一种新的方法来诊断帕金森病患者的语音障碍 | 帕金森病患者的语音信号 | 信号处理 | 神经退行性疾病 | 时频分析 | KNN分类器 | 语音信号 | 不同帕金森病患者的语音数据集 |
15083 | 2024-09-30 |
Deep Learning Based Staging of Bone Lesions From Computed Tomography Scans
2021, IEEE access : practical innovations, open solutions
IF:3.4Q2
DOI:10.1109/access.2021.3074051
PMID:34733603
|
研究论文 | 本研究提出了一种基于深度学习的分类策略,用于通过计算机断层扫描(CT)图像对前列腺癌患者的骨转移病变进行分类 | 引入了包含2880个注释骨病变的数据集,并通过患者级别的分层提高了模型的可靠性,探索了病变纹理、形态、大小、位置和体积信息对分类性能的影响,并使用多种算法进行比较,最终通过2D ResNet-50和3D ResNet-18的集成模型达到了92.2%的分类准确率 | NA | 开发一种高效且准确的深度学习模型,用于通过CT扫描图像对前列腺癌患者的骨转移病变进行分类 | 前列腺癌患者的骨转移病变 | 计算机视觉 | 前列腺癌 | 深度学习 | ResNet | 图像 | 2880个注释骨病变,来自114名前列腺癌患者 |
15084 | 2024-09-30 |
Epidemiological Predictive Modeling of COVID-19 Infection: Development, Testing, and Implementation on the Population of the Benelux Union
2021, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2021.727274
PMID:34778171
|
研究论文 | 本文提出了一种基于SEIRD模型和LSTM深度学习模型的两步法来预测COVID-19在比利时、荷兰和卢森堡(Benelux)地区的传播情况 | 结合了传统的SEIRD模型和LSTM深度学习模型来预测COVID-19的传播,并展示了两种模型在预测疫情高峰方面的有效性 | SEIRD模型在轻症病例的预测上存在较大误差,LSTM模型在比利时和荷兰的感染人数预测上也存在较高误差 | 开发和测试一种预测COVID-19感染的模型,并在Benelux地区实施,以帮助及时采取措施应对疫情 | COVID-19在Benelux地区的传播情况 | 机器学习 | COVID-19 | SEIRD模型,LSTM | LSTM | 统计数据 | 比利时、荷兰和卢森堡在2020年3月15日至2021年3月15日期间的官方统计数据 |
15085 | 2024-09-30 |
COVIDSAVIOR: A Novel Sensor-Fusion and Deep Learning Based Framework for Virus Outbreaks
2021, Frontiers in public health
IF:3.0Q2
DOI:10.3389/fpubh.2021.797808
PMID:34917585
|
研究论文 | 本文介绍了一种基于深度学习和传感器融合的新型辅助技术,用于病毒爆发期间的自动口罩检测和体温扫描 | 提出了COVIDSAVIOR框架,结合深度学习和传感器融合技术,实现了智能口罩和体温扫描系统,能够自动检测口罩佩戴情况和体温异常 | NA | 开发一种能够自动检测口罩佩戴情况和体温异常的辅助技术,以减少病毒传播 | 智能口罩和体温扫描系统 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
15086 | 2024-09-30 |
Diseases Detection of Occlusion and Overlapping Tomato Leaves Based on Deep Learning
2021, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2021.792244
PMID:34956290
|
研究论文 | 研究提出了一种基于YOLOv3-tiny-IRB算法的深度学习方法,用于检测遮挡和重叠的番茄叶片疾病 | 提出了YOLOv3-tiny-IRB算法,优化特征提取网络,减少信息损失,实现多层特征复用和融合 | NA | 提高在真实自然环境中遮挡和重叠条件下番茄病虫害检测的准确性和速度 | 番茄叶片疾病和虫害 | 计算机视觉 | NA | 深度学习 | YOLOv3-tiny-IRB | 图像 | 自建的番茄病虫害数据集 |
15087 | 2024-09-30 |
Spontaneous Facial Expressions and Micro-expressions Coding: From Brain to Face
2021, Frontiers in psychology
IF:2.6Q2
DOI:10.3389/fpsyg.2021.784834
PMID:35058850
|
研究论文 | 本文旨在通过解构面部肌肉运动,从运动皮层出发,系统梳理面部肌肉、动作单元(AU)和情绪之间的关系,使更多人理解编码的基本原理 | 本文通过数据驱动的分析和专业编码员的经验,推导出AU与情绪之间的关系,并详细讨论了生成面部运动特性的复杂面部运动皮层网络系统 | NA | 减轻基于视频的表情或微表情研究中专业知识的需求 | 面部表情和微表情的编码 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 5000张图像 |
15088 | 2024-09-30 |
Code-Free Development and Deployment of Deep Segmentation Models for Digital Pathology
2021, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2021.816281
PMID:35155486
|
研究论文 | 本文介绍了一种无需编写代码的深度学习分割模型开发和部署管道,用于数字病理学中的组织病理学全切片图像(WSIs)分割 | 提出了一个无需编写代码的管道,利用开源软件(QuPath、DeepMIB和FastPathology)创建和部署深度学习分割模型,使没有编程经验的病理学家也能创建接近最先进的分割解决方案 | NA | 提高病理学诊断的效率和可重复性 | 结肠黏膜中的上皮和基质分离 | 数字病理学 | NA | 深度学习 | 分割模型 | 图像 | 251张标注的全切片图像,包括140张苏木精-伊红(HE)染色和111张CD3免疫染色的结肠活检图像 |
15089 | 2024-09-30 |
SpatialSim: Recognizing Spatial Configurations of Objects With Graph Neural Networks
2021, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2021.782081
PMID:35156011
|
研究论文 | 本文提出了一种名为SpatialSim的新型几何推理诊断数据集,并验证了全连接消息传递图神经网络(MPGNNs)在解决识别和区分物体空间配置任务中的优势 | 提出了SpatialSim数据集,并展示了MPGNNs在几何推理任务中的优越性 | 指出了当前GNNs在识别和区分任务中的局限性 | 研究自主代理如何通过几何推理能力判断目标是否达成 | 物体空间配置的识别和区分 | 计算机视觉 | NA | 图神经网络(GNNs) | 图神经网络(MPGNNs) | 图像 | NA |
15090 | 2024-09-30 |
Emotion Recognition Based on Dynamic Energy Features Using a Bi-LSTM Network
2021, Frontiers in computational neuroscience
IF:2.1Q3
DOI:10.3389/fncom.2021.741086
PMID:35264939
|
研究论文 | 本文提出了一种基于动态能量特征的深度网络模型,用于解决脑电图(EEG)信号情感识别中因分辨率低和小样本量导致的高质量模型难以应用的问题 | 本文提出了能量序列的概念以减少特征分析和提取过程中的噪声叠加,并给出了动态能量特征集的构建方法,同时使用了双向长短期记忆(Bi-LSTM)网络以适应小数据集 | NA | 解决脑电图信号情感识别中因分辨率低和小样本量导致的高质量模型难以应用的问题 | 脑电图(EEG)信号的情感识别 | 机器学习 | NA | 双向长短期记忆(Bi-LSTM)网络 | Bi-LSTM | 脑电图(EEG)信号 | 使用了SEED和DEAP数据集,采用留一法(LOSO)和10折交叉验证(CV)策略进行实验 |
15091 | 2024-09-30 |
[Research on coronavirus disease 2019 (COVID-19) detection method based on depthwise separable DenseNet in chest X-ray images]
2020-Aug-25, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
DOI:10.7507/1001-5515.202005056
PMID:32840070
|
研究论文 | 本文提出了一种基于深度可分离DenseNet的COVID-19检测方法,并在胸部X光图像上进行了验证 | 提出了深度可分离DenseNet模型,相比传统DenseNet减少了模型参数,同时保持了分类效果 | 未提及具体的局限性 | 快速诊断COVID-19 | COVID-19的胸部X光图像 | 计算机视觉 | COVID-19 | 深度学习 | DenseNet | 图像 | 2905张胸部X光图像 |
15092 | 2024-09-30 |
LVI-PathNet: Segmentation-classification pipeline for detection of lymphovascular invasion in whole slide images of lung adenocarcinoma
2024-Dec, Journal of pathology informatics
DOI:10.1016/j.jpi.2024.100395
PMID:39328468
|
研究论文 | 本研究开发了一种用于检测肺腺癌全切片图像中淋巴血管侵犯的深度学习模型,并评估了其在病理学家信息系统中的有效性 | 本研究提出了LVI-PathNet模型,通过分割和分类管道检测淋巴血管侵犯,显著提高了检测的准确性和一致性 | 研究样本仅限于非粘液性肺腺癌,且样本量相对较小 | 开发和评估一种用于检测肺腺癌中淋巴血管侵犯的深度学习模型 | 肺腺癌全切片图像中的淋巴血管侵犯 | 数字病理学 | 肺腺癌 | 深度学习 | DeepLabV3+ | 图像 | 162张全切片图像 |
15093 | 2024-09-30 |
A comprehensive cotton leaf disease dataset for enhanced detection and classification
2024-Dec, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.110913
PMID:39328970
|
研究论文 | 本文介绍了一个全面的棉花叶病数据集,用于增强疾病检测和分类 | 该数据集包含了2137张原始图像和7000张增强图像,使用Inception V3模型展示了96.03%的高准确率 | NA | 开发用于早期疾病检测的准确机器学习模型,减少人工检查并促进及时干预 | 棉花叶病数据集及其在农业研究、精准农业和疾病管理中的应用 | 计算机视觉 | NA | 深度学习 | Inception V3 | 图像 | 2137张原始图像和7000张增强图像 |
15094 | 2024-09-30 |
Rapid profiling of carcinogenic types of Helicobacter pylori infection via deep learning analysis of label-free SERS spectra of human serum
2024-Dec, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2024.09.008
PMID:39329094
|
研究论文 | 本文开发了一种结合表面增强拉曼光谱和深度学习算法卷积神经网络的新方法,用于快速区分人血清中致癌型和非致癌型幽门螺杆菌感染 | 首次将表面增强拉曼光谱与深度学习算法结合,用于快速、准确且成本效益高的幽门螺杆菌致癌型感染血清学分析 | NA | 开发一种快速、准确且成本效益高的方法,用于血清学分析幽门螺杆菌致癌型感染,以指导其根除和胃癌预防 | 人血清中幽门螺杆菌感染的致癌型和非致癌型 | 机器学习 | 胃癌 | 表面增强拉曼光谱 | 卷积神经网络 | 光谱 | NA |
15095 | 2024-09-30 |
Enhancing Precision in Cardiac Segmentation for Magnetic Resonance-Guided Radiation Therapy Through Deep Learning
2024-Nov-01, International journal of radiation oncology, biology, physics
DOI:10.1016/j.ijrobp.2024.05.013
PMID:38797498
|
研究论文 | 本文通过深度学习框架增强磁共振引导放射治疗中的心脏分割精度 | 本文扩展了现有的深度学习框架“No New” U-Net,引入自蒸馏(nnU-Net.wSD)用于磁共振引导放射治疗中的心脏亚结构分割 | 本文的局限性在于仅在两个机构的数据上进行了验证,未来需要进一步验证其泛化能力 | 本文旨在通过深度学习提高磁共振引导放射治疗中的心脏亚结构分割精度,以减少心脏晚期并发症 | 本文研究对象为接受胸腹部放射治疗的18名患者的心脏亚结构 | 计算机视觉 | 心血管疾病 | 深度学习 | U-Net | 图像 | 18名患者,其中10名用于训练,3名用于验证,5名用于测试,另外22名用于泛化测试 |
15096 | 2024-09-30 |
Longitudinal Assessment of Tumor-Infiltrating Lymphocytes in Primary Breast Cancer Following Neoadjuvant Radiation Therapy
2024-Nov-01, International journal of radiation oncology, biology, physics
DOI:10.1016/j.ijrobp.2024.04.065
PMID:38677525
|
研究论文 | 研究了新辅助放疗对原发性乳腺癌中肿瘤浸润淋巴细胞(TILs)的纵向影响 | 首次探讨了新辅助放疗对乳腺癌肿瘤免疫微环境中TILs的影响,并展示了人工智能在病理学中的潜在应用 | 研究样本量较小,需要进一步验证结果 | 探讨新辅助放疗对乳腺癌中TILs的影响及其与病理完全缓解(pCR)和长期预后的关系 | 乳腺癌患者在接受新辅助放疗前、中、后的肿瘤样本和外周血中的淋巴细胞 | 数字病理学 | 乳腺癌 | 深度学习 | SuperTIL | 图像 | 来自PRADA和Neo-RT乳腺癌临床试验的患者样本 |
15097 | 2024-08-07 |
Correction to: Fully automated segmentation and volumetric measurement of ocular adnexal lymphoma by deep learning-based self-configuring nnU-net on multi-sequence MRI: a multi-center study
2024-Oct, Neuroradiology
IF:2.4Q2
DOI:10.1007/s00234-024-03437-5
PMID:39085640
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
15098 | 2024-09-30 |
Artificial intelligence-assisted automated heart failure detection and classification from electronic health records
2024-Oct, ESC heart failure
IF:3.2Q2
DOI:10.1002/ehf2.14828
PMID:38700133
|
研究论文 | 本文探讨了通过电子健康记录(EHR)、DICOM图像和深度学习算法自动检测和分类心力衰竭(HF)患者的方法 | 结合关键词搜索、AI自动解读DICOM超声心动图图像和生物样本分析,实现了HF亚型的自动识别 | NA | 通过自动化方法提高心力衰竭患者的检测和分类准确性 | 心力衰竭患者及其亚型分类 | 机器学习 | 心血管疾病 | 深度学习 | NA | 文本、图像 | 60,850份EHR数据,最终筛选出578名患者,包括186名对照组、236名HFpEF患者和156名HFrEF患者 |
15099 | 2024-09-30 |
Challenges for augmenting intelligence in cardiac imaging
2024-Oct, The Lancet. Digital health
DOI:10.1016/S2589-7500(24)00142-0
PMID:39214759
|
研究论文 | 本文探讨了人工智能在心脏影像中的应用及其面临的挑战 | 提出将人工智能视为增强智能,以补充而非取代人类判断,并强调从孤立测量转向整合非线性复杂数据以识别疾病表型 | 数据稀缺、隐私问题、伦理担忧以及缺乏统一模型和高质量标注数据等问题限制了AI在心脏影像中的应用 | 探讨人工智能在心脏影像中的应用及其面临的挑战,并提出改进方法 | 心脏影像数据及其在医疗中的应用 | 计算机视觉 | 心血管疾病 | 深度学习 | NA | 图像 | NA |
15100 | 2024-09-30 |
Deep learning assessment of senescence-associated nuclear morphologies in mammary tissue from healthy female donors to predict future risk of breast cancer: a retrospective cohort study
2024-Oct, The Lancet. Digital health
DOI:10.1016/S2589-7500(24)00150-X
PMID:39332852
|
研究论文 | 本研究利用深度学习技术评估健康女性乳腺组织中与衰老相关的细胞核形态,以预测未来乳腺癌的风险 | 首次将深度学习应用于评估乳腺组织中衰老细胞的核形态,并结合多种模型提高乳腺癌风险预测的准确性 | 研究基于回顾性队列,且样本主要来自健康女性,可能限制了结果的普适性 | 探索衰老标志物在健康女性乳腺组织中对乳腺癌发展的临床相关性 | 健康女性乳腺组织的细胞核形态 | 数字病理学 | 乳腺癌 | 深度学习 | 深度学习模型 | 图像 | 4382名健康女性捐赠者 |