本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 15101 | 2024-08-07 |
Correction: Displacement detection with sub-pixel accuracy and high spatial resolution using deep learning
2024-Jul, Journal of medical ultrasonics (2001)
DOI:10.1007/s10396-024-01460-w
PMID:38787517
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 15102 | 2025-10-07 |
DeepLabCut-based daily behavioural and posture analysis in a cricket
2024-04-15, Biology open
IF:1.8Q3
DOI:10.1242/bio.060237
PMID:38533608
|
研究论文 | 使用DeepLabCut深度学习技术对蟋蟀日常行为和姿势进行长期自动分析 | 首次将DeepLabCut应用于蟋蟀行为分析,实现多行为同步量化并通过姿势而非传统静止时间评估睡眠样状态 | 仅针对单个蟋蟀进行验证,未涉及群体行为交互分析 | 开发自动化系统研究昆虫昼夜节律调控的神经机制 | 蟋蟀(Gryllus bimaculatus)个体 | 计算机视觉 | NA | 深度学习行为分析 | 监督机器学习 | 视频图像 | 单个蟋蟀(具体数量未明确说明) | DeepLabCut | NA | 置信度评分 | NA |
| 15103 | 2025-10-07 |
Examining evolutionary scale modeling-derived different-dimensional embeddings in the antimicrobial peptide classification through a KNIME workflow
2024-Apr, Protein science : a publication of the Protein Society
IF:4.5Q1
DOI:10.1002/pro.4928
PMID:38501511
|
研究论文 | 本研究通过KNIME工作流评估ESM-2模型生成的不同维度嵌入在抗菌肽分类中的效果 | 首次系统比较ESM-2模型不同维度嵌入在抗菌肽分类中的表现,并开发可复现的KNIME工作流确保方法公平性 | 研究发现ESM-2嵌入中43%-66%的特征未被使用,存在特征冗余问题 | 评估进化尺度建模衍生的不同维度嵌入在抗菌肽分类中的有效性 | 抗菌肽(AMPs) | 生物信息学 | NA | 进化尺度建模(ESM-2), QSAR建模 | QSAR模型 | 蛋白质序列嵌入 | NA | KNIME | ESM-2(30层和33层变体) | 统计性能指标 | NA |
| 15104 | 2025-03-21 |
A full-stack platform for spiking deep learning
2023-Nov, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-023-00565-5
PMID:38177599
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 15105 | 2025-03-21 |
Accurately predicting molecular spectra with deep learning
2023-Nov, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-023-00553-9
PMID:38177595
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 15106 | 2025-10-07 |
A deep learning model for predicting selected organic molecular spectra
2023-Nov, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-023-00550-y
PMID:38177591
|
研究论文 | 开发了一种结合E(3)等变群和自注意力机制的深度学习模型DetaNet,用于高效预测分子光谱 | 结合E(3)等变群和自注意力机制,能够生成包括标量、向量及高阶张量在内的多种分子性质,达到量子化学计算精度 | 基于QM9S数据集进行验证,尚未在其他数据集上测试泛化能力 | 提高分子光谱预测的效率和准确性 | 有机分子光谱 | 机器学习 | NA | 深度学习 | 图神经网络 | 分子结构数据 | 130,000个分子物种 | NA | E(3)-等变网络,自注意力机制 | 量子化学计算精度 | NA |
| 15107 | 2025-10-07 |
High-throughput property-driven generative design of functional organic molecules
2023-Feb, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-022-00391-1
PMID:38177626
|
研究论文 | 本研究开发了一种结合生成式深度学习与监督式深度学习的分子设计方法,用于高效发现具有优化电子特性的有机分子 | 通过将预测分子三维构象的生成模型与预测电子特性的监督模型相结合,实现了对多个分子特性的帕累托优化,无需在预测过程中进行量子化学计算 | 方法主要针对有机电子学应用进行验证,在其他材料领域的适用性需要进一步测试 | 开发高效的功能性有机分子生成设计方法 | 有机分子 | 机器学习 | NA | 深度学习 | 生成式深度学习模型, 监督式深度学习模型 | 分子三维构象数据, 电子结构数据 | NA | NA | NA | 帕累托最优性 | NA |
| 15108 | 2025-10-07 |
Dimensionally consistent learning with Buckingham Pi
2022-Dec, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-022-00355-5
PMID:38177386
|
研究论文 | 提出基于白金汉π定理的数据驱动方法,通过对称性和自相似结构自动发现最优无量纲群 | 将白金汉π定理作为约束条件,开发了三种数据驱动技术来发现最优无量纲群 | 方法在三个示例问题中验证但需进一步测试更复杂系统 | 开发自动发现物理系统最优无量纲群的数据驱动方法 | 物理系统的测量数据和参数 | 机器学习 | NA | 无量纲分析 | 深度学习, 稀疏识别 | 物理测量数据 | NA | NA | BuckiNet | 准确度, 鲁棒性, 计算复杂度 | NA |
| 15109 | 2025-10-07 |
A universal graph deep learning interatomic potential for the periodic table
2022-Nov, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-022-00349-3
PMID:38177366
|
研究论文 | 开发了一种基于图神经网络的通用材料间原子势能函数M3GNet,用于材料结构弛豫、动态模拟和性质预测 | 提出了首个覆盖整个元素周期表的通用间原子势能函数,结合了三体相互作用的图神经网络架构 | NA | 开发能够广泛应用于不同化学空间的材料间原子势能函数 | 材料间原子势能函数和材料稳定性预测 | 机器学习 | NA | 图神经网络,密度泛函理论计算 | 图神经网络 | 材料结构数据,能量数据 | 基于材料项目过去十年的结构弛豫数据库,筛选了3100万假设晶体结构中的180万种材料 | NA | M3GNet(具有三体相互作用的图神经网络) | 材料稳定性验证准确率(1578/2000) | NA |
| 15110 | 2025-10-07 |
Challenges and opportunities in quantum machine learning
2022-Sep, Nature computational science
IF:12.0Q1
DOI:10.1038/s43588-022-00311-3
PMID:38177473
|
综述 | 本文探讨量子机器学习在量子计算与机器学习交叉领域的潜力、挑战与发展机遇 | 系统对比量子与经典机器学习的差异,重点关注量子神经网络与量子深度学习的前沿进展 | NA | 分析量子机器学习的当前方法、应用场景及实现量子优势的潜在路径 | 量子机器学习模型与方法论 | 机器学习 | NA | 量子计算 | 量子神经网络, 量子深度学习 | 量子数据 | NA | NA | NA | NA | 量子计算设备 |
| 15111 | 2025-03-20 |
Effect of adaptive statistical iterative reconstruction-V algorithm and deep learning image reconstruction algorithm on image quality and emphysema quantification in COPD patients under ultra-low-dose conditions
2025-Apr-01, The British journal of radiology
DOI:10.1093/bjr/tqae251
PMID:39862404
|
研究论文 | 本研究探讨了在超低剂量扫描条件下,不同重建算法(ASIR-V和DLIR)对慢性阻塞性肺疾病(COPD)患者图像质量和肺气肿定量的影响 | 首次在超低剂量CT扫描条件下比较了ASIR-V和DLIR算法对COPD患者图像质量和肺气肿定量的影响,并发现DLIR-M在图像质量和肺气肿定量方面表现最佳 | 样本量相对较小(62名COPD患者),且仅使用了商业计算机辅助诊断(CAD)软件进行分析 | 探讨不同重建算法在超低剂量CT扫描条件下对COPD患者图像质量和肺气肿定量的影响 | 62名COPD患者 | 数字病理 | 慢性阻塞性肺疾病(COPD) | CT扫描、计算机辅助诊断(CAD) | ASIR-V、DLIR | CT图像 | 62名COPD患者 | NA | NA | NA | NA |
| 15112 | 2025-03-20 |
X2-PEC: A Neural Network Model Based on Atomic Pair Energy Corrections
2025-Mar-30, Journal of computational chemistry
IF:3.4Q2
DOI:10.1002/jcc.70081
PMID:40099806
|
研究论文 | 本文介绍了X2-PEC方法,这是一种基于原子对能量校正的神经网络模型,旨在提高低阶密度泛函理论(DFT)计算的准确性 | X2-PEC模型通过使用重叠积分和核心哈密顿积分将物理和化学信息整合到特征向量中,以描述原子相互作用,从而提升低阶DFT计算的准确性 | NA | 提升低阶密度泛函理论(DFT)计算的准确性,使其达到高阶DFT计算的水平 | 分子性质预测,特别是异构体的原子化能量 | 机器学习 | NA | 人工神经网络(ANN) | X2-PEC | 分子数据 | QM9数据集,以及G2-HCNOF、PSH36、ALKANE28、BIGMOL20和HEDM45等数据集 | NA | NA | NA | NA |
| 15113 | 2025-03-20 |
Recent Progress on Heterojunction-Based Memristors and Artificial Synapses for Low-Power Neural Morphological Computing
2025-Mar-19, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202412851
PMID:40103529
|
综述 | 本文综述了基于异质结的忆阻器和人工突触在低功耗神经形态计算领域的最新进展 | 通过优化异质结的材料组成、界面特性和器件结构,降低能耗并提高性能稳定性和耐久性,为低功耗神经形态计算系统提供支持 | 详细讨论了限制基于异质结的忆阻器和人工突触发展的瓶颈 | 探讨基于异质结的忆阻器和人工突触在低功耗神经形态计算中的应用 | 异质结忆阻器和人工突触 | 神经形态计算 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 15114 | 2025-03-20 |
Privacy-Preserving Data Augmentation for Digital Pathology Using Improved DCGAN
2025-Mar-18, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3551720
PMID:40100674
|
研究论文 | 本文提出了一种基于改进的深度卷积生成对抗网络(DCGAN)的数据增强方法,用于数字病理学中的全切片图像(WSI)分析 | 利用自监督预训练的CTransPath模型提取多样且具有代表性的WSI特征,引入最小二乘对抗损失和频域损失以提高像素级精度和结构保真度,并通过残差块和跳跃连接增加网络深度、缓解梯度消失并提高训练稳定性 | 实验仅在PatchCamelyon数据集上进行,未验证在其他数据集上的泛化能力 | 解决数字病理学中WSI数据集因隐私法规限制而可用性不足的问题,提升深度学习模型的性能和泛化能力 | 全切片图像(WSI) | 数字病理学 | 肿瘤学 | DCGAN | 改进的DCGAN | 图像 | PatchCamelyon数据集 | NA | NA | NA | NA |
| 15115 | 2025-03-20 |
Detection of Anomalies in Data Streams Using the LSTM-CNN Model
2025-Mar-06, Sensors (Basel, Switzerland)
DOI:10.3390/s25051610
PMID:40096438
|
研究论文 | 本文对应用于数据流异常检测的深度学习方法进行了比较分析,并评估了创新的LSTM-CNN方法的效果 | 提出了创新的LSTM-CNN方法,并证明其在数据流异常检测中的有效性 | 仅使用了Yahoo! Webscope S5数据集进行实验,未在其他数据集上验证 | 比较不同深度学习模型在数据流异常检测中的性能 | 数据流中的异常检测 | 机器学习 | NA | NA | LSTM, LSTM autoencoder, LSTM-CNN | 数据流 | Yahoo! Webscope S5数据集 | NA | NA | NA | NA |
| 15116 | 2025-03-20 |
Landsat Time Series Reconstruction Using a Closed-Form Continuous Neural Network in the Canadian Prairies Region
2025-Mar-06, Sensors (Basel, Switzerland)
DOI:10.3390/s25051622
PMID:40096481
|
研究论文 | 本研究探讨了在加拿大草原地区使用封闭式连续深度神经网络(CFC)与循环神经网络(RNN)结合的CFC-mmRNN模型,用于重建1985年至今的Landsat时间序列 | 提出了一种新的CFC-mmRNN模型,显著提高了Landsat时间序列重建的准确性,相比传统方法在光谱波段上的精度提升了33%至42% | 研究主要针对加拿大草原地区,可能在其他地理区域的适用性有待验证 | 提高Landsat时间序列重建的准确性,以支持更广泛的环境监测和预测应用 | Landsat时间序列数据 | 遥感 | NA | 封闭式连续深度神经网络(CFC)与循环神经网络(RNN)结合 | CFC-mmRNN | 卫星图像 | 1985年至今的Landsat时间序列数据 | NA | NA | NA | NA |
| 15117 | 2025-03-20 |
YOLO-ACE: Enhancing YOLO with Augmented Contextual Efficiency for Precision Cotton Weed Detection
2025-Mar-06, Sensors (Basel, Switzerland)
DOI:10.3390/s25051635
PMID:40096500
|
研究论文 | 本文提出了一种名为YOLO-ACE的改进模型,用于提高棉花田中杂草检测的精度和效率 | YOLO-ACE通过集成上下文增强模块(CAM)和选择性核注意力机制(SKAttention),以及解耦检测头,提升了多尺度特征捕捉和动态调整感受野的能力 | NA | 提高棉花田中杂草检测的精度和效率,以满足现代农业杂草管理的严格要求 | 棉花田中的杂草 | 计算机视觉 | NA | 深度学习 | YOLOv5s的改进版YOLO-ACE | 图像 | CottonWeedDet12 (CWD12) 数据集和CropWeed数据集 | NA | NA | NA | NA |
| 15118 | 2025-03-20 |
Quality of Experience (QoE) in Cloud Gaming: A Comparative Analysis of Deep Learning Techniques via Facial Emotions in a Virtual Reality Environment
2025-Mar-05, Sensors (Basel, Switzerland)
DOI:10.3390/s25051594
PMID:40096493
|
研究论文 | 本文比较了在虚拟现实环境中通过玩家面部表情评估云游戏体验质量(QoE)的深度学习技术 | 提出了一种基于卷积神经网络(CNN)架构的EmotionNET模型技术,用于通过面部表情评估云游戏体验质量,并与ConvoNEXT、EfficientNET和Vision Transformer(ViT)等其他深度学习技术进行了比较 | 传统评估方法未能准确捕捉用户的实际体验质量,部分用户对提供反馈不认真,即使服务符合SLA,部分玩家仍声称未收到承诺的服务 | 提高云游戏用户的体验质量(QoE) | 云游戏玩家 | 计算机视觉 | NA | 深度学习(DL) | CNN, ConvoNEXT, EfficientNET, Vision Transformer (ViT) | 面部表情数据 | 自定义数据集,EmotionNET模型训练准确率为98.9%,验证准确率为87.8% | NA | NA | NA | NA |
| 15119 | 2025-03-20 |
Research on Network Intrusion Detection Model Based on Hybrid Sampling and Deep Learning
2025-Mar-04, Sensors (Basel, Switzerland)
DOI:10.3390/s25051578
PMID:40096461
|
研究论文 | 本研究提出了一种基于混合采样和深度学习的增强型网络入侵检测模型TRBMA,旨在解决现有模型在时间特征学习不完整和恶意流量分类准确率低的问题 | TRBMA模型结合了Temporal Convolutional Networks (TCNs)、Bidirectional Gated Recurrent Units (BiGRUs)和Multi-Head Self-Attention机制,改进了ResNet18架构,并引入了AdamW优化器以提高模型训练的收敛速度和泛化能力 | NA | 提高网络入侵检测模型的准确率,特别是对恶意流量类型的识别 | 网络流量数据,特别是恶意流量类型 | 机器学习 | NA | 深度学习 | 1D-TCN-ResNet-BiGRU-Multi-Head Attention (TRBMA) | 时间序列数据 | CIC-IDS-2017数据集 | NA | NA | NA | NA |
| 15120 | 2025-03-20 |
Closing Gaps in Diabetic Retinopathy Screening in India Using a Deep Learning System
2025-Mar-03, JAMA network open
IF:10.5Q1
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |