本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15141 | 2025-03-20 |
Deep Learning Based on ResNet-18 for Classification of Prostate Imaging-Reporting and Data System Category 3 Lesions
2024-06, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.12.042
PMID:38302387
|
研究论文 | 本研究探讨了基于ResNet-18的深度学习模型在前列腺影像报告和数据系统(PI-RADS)3类病变中对良性前列腺病变、非临床显著性前列腺癌(non-csPCa)和临床显著性前列腺癌(csPCa)的分类和预测效果 | 首次使用ResNet-18模型对PI-RADS 3类病变进行分类,并通过T-SNE和类激活映射进行特征可视化和模型关注区域的可视化 | 研究为回顾性研究,样本量相对较小,且仅使用了T2加权图像 | 探索深度学习模型在前列腺PI-RADS 3类病变中的分类和预测效果 | PI-RADS 3类病变的T2加权图像 | 数字病理学 | 前列腺癌 | 多参数MRI或双参数MRI | ResNet-18 | 图像 | 428张良性前列腺病变图像、158张非临床显著性前列腺癌图像和273张临床显著性前列腺癌图像 | NA | NA | NA | NA |
15142 | 2025-03-20 |
Deep Learning Image Reconstruction for Transcatheter Aortic Valve Implantation Planning: Image Quality, Diagnostic Performance, Contrast volume and Radiation Dose Assessment
2024-06, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.02.026
PMID:38472024
|
研究论文 | 本研究评估了在经导管主动脉瓣植入(TAVI)规划CT中使用高强度深度学习图像重建(DLIR-H)对图像质量、对比剂用量、辐射剂量及诊断性能的影响 | 首次在TAVI规划CT中应用DLIR-H技术,并系统评估其在降低辐射剂量、对比剂用量及提升图像质量方面的潜力 | 研究样本量相对较小(128例患者),且仅在一家医疗机构进行,可能影响结果的普遍性 | 评估DLIR-H在TAVI规划CT中的应用效果,包括图像质量、辐射剂量、对比剂用量及诊断性能 | 128例接受TAVI规划CT的患者 | 数字病理学 | 心血管疾病 | 深度学习图像重建(DLIR-H) | NA | CT图像 | 128例患者 | NA | NA | NA | NA |
15143 | 2025-03-20 |
CT-Based Super-Resolution Deep Learning Models with Attention Mechanisms for Predicting Spread Through Air Spaces of Solid or Part-Solid Lung Adenocarcinoma
2024-06, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.12.034
PMID:38184418
|
研究论文 | 本研究开发了一种基于CT超分辨率和注意力机制的深度学习模型,用于预测实性或部分实性肺腺癌的空气传播扩散状态 | 使用SE-ResNet50模型结合CT超分辨率技术,显著提高了预测肺腺癌空气传播扩散状态的准确性 | 研究为回顾性研究,样本量相对有限,且仅来自两个医疗中心 | 预测肺腺癌的空气传播扩散状态,以帮助选择合适的手术方法 | 602名被诊断为肺腺癌的患者 | 计算机视觉 | 肺癌 | CT超分辨率 | SE-ResNet50, ResNet50 | CT图像 | 602名患者(中心1:512名,中心2:90名) | NA | NA | NA | NA |
15144 | 2025-10-07 |
CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning
2024-06, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.11.024
PMID:38057182
|
研究论文 | 本研究基于对比增强磁共振图像,通过整合瘤内异质性模型和深度学习模型预测肝细胞癌的微血管侵犯和病理分化 | 首次将基于栖息地分析的瘤内异质性特征与深度学习特征融合,构建预测肝细胞癌侵袭性特征的融合模型 | 回顾性研究设计,样本量相对有限(277个HCC病灶),需要外部验证 | 预测肝细胞癌的微血管侵犯和病理分化程度 | 肝细胞癌患者 | 医学影像分析 | 肝细胞癌 | 对比增强磁共振成像 | 深度学习 | 医学影像 | 265名患者的277个HCC病灶(训练集221个,验证集56个) | NA | NA | AUC | NA |
15145 | 2025-10-07 |
Deep Learning Radiomics Nomogram Based on Magnetic Resonance Imaging for Differentiating Type I/II Epithelial Ovarian Cancer
2024-06, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.08.002
PMID:37643927
|
研究论文 | 开发并验证基于T2加权磁共振成像的深度学习放射组学列线图用于区分I型和II型上皮性卵巢癌 | 首次将深度学习特征、放射组学特征和临床预测因子整合构建多中心验证的列线图模型 | 样本量相对有限,仅基于T2加权MRI序列 | 区分I型和II型上皮性卵巢癌的亚型分类 | 437名来自五个医疗中心的上皮性卵巢癌患者 | 医学影像分析 | 卵巢癌 | 磁共振成像 | 深度学习模型 | 医学影像 | 437例患者(训练集271例,内部验证68例,外部验证98例) | NA | NA | AUC, Brier分数, 校准曲线, 决策曲线分析 | NA |
15146 | 2025-10-07 |
Contrast-Enhanced CT-Based Deep Learning Radiomics Nomogram for the Survival Prediction in Gallbladder Cancer
2024-06, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.11.027
PMID:38061942
|
研究论文 | 本研究开发了一种基于增强CT的深度学习放射组学列线图模型,用于预测胆囊癌患者术后生存率 | 整合了临床特征、传统放射组学和深度学习特征的多模态预测模型 | 回顾性研究且样本量有限(仅167例患者) | 开发准确的预后预测模型以指导胆囊癌治疗策略 | 接受手术切除的胆囊癌患者 | 数字病理 | 胆囊癌 | 对比增强CT成像 | 深度学习, 机器学习 | 医学影像 | 167例来自两家医疗机构的胆囊癌患者 | NA | DenseNet121 | AUC, C-index | NA |
15147 | 2025-03-20 |
Fusion Radiomics-Based Prediction of Response to Neoadjuvant Chemotherapy for Osteosarcoma
2024-06, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.12.015
PMID:38151381
|
研究论文 | 本研究旨在开发一种基于深度学习的放射组学模型,利用术前MR图像准确预测骨肉瘤患者对新辅助化疗的反应 | 结合深度学习与放射组学技术,开发了一种新的预测模型,能够高精度预测骨肉瘤患者对新辅助化疗的反应 | 样本量相对较小,仅106名患者,且仅使用了T2加权成像和对比增强T1加权成像两种MR图像 | 开发一种深度学习放射组学模型,用于预测骨肉瘤患者对新辅助化疗的反应 | 106名病理确诊为骨肉瘤的患者 | 数字病理 | 骨肉瘤 | 深度学习放射组学 | 深度学习模型 | MR图像 | 106名骨肉瘤患者 | NA | NA | NA | NA |
15148 | 2025-03-20 |
Anti-motion Ultrafast T2 Mapping Technique for Quantitative Detection of the Normal-Appearing Corticospinal Tract Changes in Subacute-Chronic Stroke Patients with Distal Lesions
2024-06, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.11.036
PMID:38142175
|
研究论文 | 本研究利用多重叠回波分离(MOLED)定量技术,克服中风患者在磁共振成像(MRI)检查中的不自主运动问题,并检测亚急性-慢性中风患者正常外观皮质脊髓束(NA-CST)的微观结构变化 | 采用MOLED技术进行定量成像,解决了中风患者因不自主运动导致的成像难题,并首次通过T2映射检测NA-CST的微观结构变化 | 研究样本量有限,仅包括79名患者,且未探讨MOLED技术在其他类型中风或神经系统疾病中的应用 | 克服中风患者MRI检查中的运动问题,并定量检测NA-CST的微观结构变化 | 亚急性-慢性中风患者 | 数字病理学 | 中风 | MOLED技术 | 深度学习网络 | MRI图像 | 79名患者 | NA | NA | NA | NA |
15149 | 2025-10-07 |
Habitat Radiomics Based on MRI for Predicting Platinum Resistance in Patients with High-Grade Serous Ovarian Carcinoma: A Multicenter Study
2024-06, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2023.11.038
PMID:38129227
|
研究论文 | 本研究探索基于MRI的栖息地放射组学预测高级别浆液性卵巢癌患者铂类药物化疗反应的可行性 | 首次将栖息地放射组学应用于预测HGSOC患者铂类药物耐药性,并与传统放射组学和深度学习模型进行比较 | 回顾性研究设计,样本来源仅限于三家医院 | 预测高级别浆液性卵巢癌患者对铂类药物化疗的反应 | 高级别浆液性卵巢癌患者 | 医学影像分析 | 卵巢癌 | MRI成像,包括T2加权成像、对比增强T1加权成像和表观扩散系数图 | 放射组学模型,栖息地模型,深度学习模型 | 医学影像数据 | 394名符合条件的患者 | NA | K-means聚类算法 | AUC,NRI,IDI | NA |
15150 | 2025-03-20 |
Influence of Deep Learning Based Image Reconstruction on Quantitative Results of Coronary Artery Calcium Scoring
2024-06, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2024.03.020
PMID:38582685
|
研究论文 | 本文评估了基于深度学习的图像重建(DLIR)对冠状动脉钙化评分(CACS)定量结果的影响,并探讨了DLIR在CACS中减少辐射剂量的潜力 | 首次系统评估了DLIR在CACS中的应用,并与传统的滤波反投影(FBP)和自适应统计迭代重建(ASiR-V)进行了比较 | 研究样本量较小(100名患者),且为回顾性研究,可能影响结果的普遍性 | 评估DLIR对CACS定量结果的影响及其在减少辐射剂量方面的潜力 | 100名连续患者和一个人体模型 | 医学影像 | 心血管疾病 | 深度学习图像重建(DLIR) | NA | 图像 | 100名患者(平均年龄62±10岁,40%女性)和一个人体模型 | NA | NA | NA | NA |
15151 | 2025-03-20 |
Assertion Detection in Clinical Natural Language Processing using Large Language Models
2024-Jun, Proceedings. IEEE International Conference on Healthcare Informatics
DOI:10.1109/ichi61247.2024.00039
PMID:40092287
|
研究论文 | 本研究旨在解决从临床笔记中提取医学概念时的断言检测任务,这是临床自然语言处理(NLP)中的关键过程 | 引入了一种利用预训练在大量医学数据上的大型语言模型(LLMs)进行断言检测的新方法,并结合了先进的推理技术如Tree of Thought (ToT)、Chain of Thought (CoT)和Self-Consistency (SC),并通过Low-Rank Adaptation (LoRA)微调进一步优化 | 传统方法需要大量手动工作来创建模式,并且往往忽略较少见的断言类型,导致对上下文的理解不完整 | 提高临床NLP中医学概念断言检测的准确性和效率 | 临床笔记中的医学概念 | 自然语言处理 | NA | 大型语言模型(LLMs) | LLMs | 文本 | i2b2 2010断言数据集和本地睡眠概念提取数据集 | NA | NA | NA | NA |
15152 | 2025-03-20 |
Generalizing Parkinson's disease detection using keystroke dynamics: a self-supervised approach
2024-May-20, Journal of the American Medical Informatics Association : JAMIA
IF:4.7Q1
DOI:10.1093/jamia/ocae050
PMID:38497957
|
研究论文 | 本研究提出了一种自监督学习方法,通过减少对标签的依赖来提高帕金森病检测的泛化能力 | 结合Barlow Twins损失和差异损失的自监督损失函数,用于从未标记数据中学习更稳健的特征表示 | 缺乏标准化的数据采集协议和注释数据集的有限可用性 | 验证自监督学习方法在减少标签依赖和提高帕金森病检测泛化能力方面的有效性 | 帕金森病患者和对照组 | 机器学习 | 帕金森病 | 自监督学习 | 自监督学习模型 | 击键动态信号 | 2个独立数据集中的对照组和帕金森病患者 | NA | NA | NA | NA |
15153 | 2025-03-20 |
An efficient deep learning strategy for accurate and automated detection of breast tumors in ultrasound image datasets
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1461542
PMID:40098633
|
研究论文 | 本文提出了一种基于改进深度学习模型的新方法,用于乳腺肿瘤的智能辅助诊断,结合优化的U2NET-Lite模型和高效的DeepCardinal-50模型,在乳腺超声图像的精确分割和分类方面表现出色 | 结合优化的U2NET-Lite模型和DeepCardinal-50模型,提出了一种新的深度学习策略,用于乳腺肿瘤的自动检测,相比传统模型如ResNet和AlexNet,具有更高的准确性和效率 | 未提及具体的数据集规模或模型在不同数据集上的泛化能力 | 开发一种自动化和高效的乳腺肿瘤检测模型,以辅助乳腺癌的早期诊断和治疗 | 乳腺超声图像 | 计算机视觉 | 乳腺癌 | 深度学习 | U2NET-Lite, DeepCardinal-50 | 图像 | 未提及具体样本数量 | NA | NA | NA | NA |
15154 | 2025-03-19 |
Leveraging deep learning for epigenetic protein prediction: a novel approach for early lung cancer diagnosis and drug discovery
2025-Dec, Health information science and systems
IF:4.7Q1
DOI:10.1007/s13755-025-00347-5
PMID:40083337
|
研究论文 | 本文提出了一种基于深度学习的表观遗传蛋白预测方法,用于早期肺癌诊断和药物发现 | 构建了CNN-BiLSTM模型,结合AmpPseAAC特征提取方法,显著提高了表观遗传蛋白预测的性能 | 未提及具体的数据集大小和模型在实际应用中的验证情况 | 通过预测表观遗传蛋白,改进疾病诊断和治疗策略,特别是肺癌 | 表观遗传蛋白 | 机器学习 | 肺癌 | 深度学习 | CNN-BiLSTM | 蛋白质序列数据 | NA | NA | NA | NA | NA |
15155 | 2025-03-19 |
StopSpamX: A multi modal fusion approach for spam detection in social networking
2025-Jun, MethodsX
IF:1.6Q2
DOI:10.1016/j.mex.2025.103227
PMID:40093577
|
研究论文 | 本文提出了一种多模态融合方法StopSpamX,用于社交网络中的垃圾信息检测 | 结合了多种最先进的词嵌入技术和深度学习混合融合分类器技术,包括GRU、LSTM和CNN,以提高垃圾信息检测的性能 | 未提及具体的数据集大小或实验环境的限制 | 实现一个无垃圾信息的社交网络环境 | 社交网络平台(如Twitter、Instagram、Youtube、Facebook、Whatsapp)上的数据 | 自然语言处理 | NA | Word2Vec, GloVe, FastText, GRU, LSTM, CNN | 混合融合分类器(基于文本的分类器和组合分类器) | 文本 | 未提及具体样本数量 | NA | NA | NA | NA |
15156 | 2025-03-19 |
Prediction of lymph node metastasis in papillary thyroid carcinoma using non-contrast CT-based radiomics and deep learning with thyroid lobe segmentation: A dual-center study
2025-Jun, European journal of radiology open
IF:1.8Q3
DOI:10.1016/j.ejro.2025.100639
PMID:40093877
|
研究论文 | 本研究旨在通过深度学习放射组学(DLRad)和临床特征开发预测乳头状甲状腺癌(PTC)患者淋巴结转移(LNM)的模型 | 结合深度学习放射组学和临床特征,开发了一个新的预测模型,用于预测PTC患者的LNM,并在双中心研究中验证了其性能 | 研究样本量相对较小,且仅使用了非对比CT数据,可能限制了模型的泛化能力 | 开发并验证一个预测PTC患者LNM的模型 | 228名PTC患者的271个甲状腺叶 | 数字病理学 | 甲状腺癌 | 非对比CT | 深度学习 | 图像 | 271个甲状腺叶(来自228名PTC患者) | NA | NA | NA | NA |
15157 | 2025-10-07 |
Sensitivity-enhanced hydrogel digital RT-LAMP with in situ enrichment and interfacial reaction for norovirus quantification in food and water
2025-May-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.137325
PMID:39864200
|
研究论文 | 开发了一种基于水凝胶数字RT-LAMP的灵敏度增强方法,用于食品和水中诺如病毒的定量检测 | 通过原位蒸发富集和界面酶反应将检测灵敏度提高20倍,并在15分钟内实现单病毒定量 | NA | 开发高灵敏度诺如病毒检测方法用于食品安全监测和环境监测 | 人类诺如病毒、其他细菌和病毒 | 数字病理 | 诺如病毒感染 | 数字反转录环介导等温扩增(RT-LAMP)、水凝胶技术 | 深度学习模型 | 图像数据 | 3个湖水样本、草莓样本、自来水、饮用水 | NA | NA | 灵敏度 | 智能手机应用 |
15158 | 2025-10-07 |
Mapping nutrient pollution in inland water bodies using multi-platform hyperspectral imagery and deep regression network
2025-May-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.137314
PMID:39874751
|
研究论文 | 提出一种基于多平台高光谱影像和深度回归网络的内陆水体营养盐污染制图方法 | 提出结合高维注意力加权差异的深度卷积空谱联合学习方法,优化深度特征提取 | NA | 解决水质制图不准确的问题,实现多参数水质指标的高精度估算 | 内陆水体中的总氮、总磷和氨氮三种关键富营养化相关水质参数 | 计算机视觉 | NA | 高光谱遥感 | 深度学习回归网络 | 高光谱影像 | NA | NA | 深度卷积网络 | 决定系数(R2), 平均绝对误差(MAE), 均方误差(MSE) | NA |
15159 | 2025-03-19 |
Validation of Deep Learning-Based Automatic Retinal Layer Segmentation Algorithms for Age-Related Macular Degeneration with 2 Spectral-Domain OCT Devices
2025 May-Jun, Ophthalmology science
IF:3.2Q1
DOI:10.1016/j.xops.2024.100670
PMID:40091912
|
研究论文 | 本研究验证了基于深度学习的自动视网膜层分割算法在两种光谱域OCT设备上的应用,特别是在年龄相关性黄斑变性(AMD)中的应用 | 通过在不同OCT设备上测试深度学习模型的鲁棒性,验证了其在生成临床相关指标方面的有效性 | 研究依赖于专家验证的地面真实标签,这一过程资源密集,限制了算法在多种OCT设备上的广泛应用 | 验证深度学习图像分割模型在多种OCT设备上的应用,评估其设备独立性 | 年龄相关性黄斑变性(AMD)患者 | 数字病理学 | 年龄相关性黄斑变性 | 光谱域OCT(SD-OCT) | UNet, DeepLabv3 | 图像 | 402个SD-OCT扫描 | NA | NA | NA | NA |
15160 | 2025-10-07 |
Importance of neural network complexity for the automatic segmentation of individual thigh muscles in MRI images from patients with neuromuscular diseases
2025-Apr, Magma (New York, N.Y.)
DOI:10.1007/s10334-024-01221-3
PMID:39798067
|
研究论文 | 本研究探讨了神经网络复杂度对神经肌肉疾病患者MRI图像中大腿肌肉自动分割的影响 | 首次系统研究神经网络复杂度降低对个体肌肉脂肪分数量化的影响 | 研究样本量相对有限(73名受试者),仅针对大腿肌肉区域 | 评估不同复杂度U-Net架构在神经肌肉疾病患者大腿肌肉分割和脂肪分数量化中的性能 | 神经肌肉疾病患者和健康受试者的大腿MRI图像 | 医学影像分析 | 神经肌肉疾病 | MRI | U-Net | 医学图像 | 1450张大腿图像,来自59名患者和14名健康受试者(共73人) | NA | U-Net, nnU-Net | Dice分数, 脂肪分数量化误差 | GPU内存使用(2.37-12.8 GB),训练时间(14-167小时) |