深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 23544 篇文献,本页显示第 1501 - 1520 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1501 2025-04-10
Clinical microbiology and artificial intelligence: Different applications, challenges, and future prospects
2025-Apr-04, Journal of microbiological methods IF:1.7Q4
综述 本文综述了人工智能在临床微生物学中的不同应用、挑战及未来前景 介绍了人工智能如何通过处理和分析综合数据来优化传统临床微生物技术,并探讨了AI在预测新型抗菌剂和COVID-19疫苗开发中的应用 人工智能在临床微生物学中的应用面临伦理问题、潜在偏见和数据训练相关的错误等挑战 概述人工智能在临床微生物学中的最新应用,并讨论其面临的挑战和未来机会 临床微生物学领域的研究者和从业者 人工智能 传染病 全基因组测序(WGS)、蛋白质数据库(PDBs)、拉曼光谱、MALDI-TOF光谱 机器学习和深度学习算法 光谱分析数据、显微图像、基因组和蛋白质序列 NA
1502 2025-04-10
Revisiting Supervised Learning-Based Photometric Stereo Networks
2025-Apr-03, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
research paper 本文通过重新审视现有方法的深度特征、深度特征编码策略和网络架构,揭示了监督学习光度立体网络如何解决未知反射率和全局光照效应带来的挑战,并提出了ESSENCE-Net方法 提出了ESSENCE-Net,采用easy-first-encoding策略有效编码深度阴影特征,通过阴影监督增强阴影特征,并利用空间上下文感知注意力准确解码法线 未明确提及具体限制 揭示监督学习光度立体网络如何解决未知反射率和全局光照效应带来的挑战,并提升性能 光度立体网络 computer vision NA 深度学习 ESSENCE-Net image 三个基准数据集
1503 2025-04-10
Development and validation of a deep learning model based on cascade mask regional convolutional neural network to noninvasively and accurately identify human round spermatids
2025-Apr-02, Journal of advanced research IF:11.4Q1
研究论文 开发并验证了一种基于级联掩膜区域卷积神经网络(R-CNN)的深度学习模型,用于非侵入性且准确地识别人类圆形精子细胞 首次使用深度学习模型非侵入性地识别人类圆形精子细胞,避免了传统Hoechst染色的毒性问题 研究样本量相对较小(3457张图像),且模型在临床广泛应用前需进一步验证 评估深度学习模型在非侵入性识别人类圆形精子细胞方面的能力 人类圆形精子细胞(hRSs) 计算机视觉 男性不育症 流式细胞术分析 级联掩膜区域卷积神经网络(R-CNN) 图像 3457张光学显微镜图像
1504 2025-04-10
An explainable deep learning platform for molecular discovery
2025-Apr, Nature protocols IF:13.1Q1
研究论文 介绍了一个可解释的深度学习平台,用于分子发现,特别是抗生素的结构类别 提出了一个基于图神经网络的可解释深度学习平台,能够识别预测活性的化学子结构,提高分子发现的效率 需要实验数据生成和模型实现,且平台的应用范围虽然广泛,但具体效果可能因分子类型而异 开发一个可解释的深度学习平台,用于高效发现具有特定活性的分子结构类别 抗生素的结构类别,以及其他小分子如抗癌、抗病毒和抗衰老药物 机器学习 NA 图神经网络 GNN 化学结构数据 NA
1505 2025-04-10
Deep Learning and Hyperspectral Imaging for Liver Cancer Staging and Cirrhosis Differentiation
2025-Apr, Journal of biophotonics IF:2.0Q3
研究论文 本文提出了一种结合高光谱成像和深度学习的新诊断策略,用于肝癌分期和肝硬化鉴别 创新性地整合高光谱成像与深度学习,捕捉传统方法难以识别的细微细胞差异 未提及样本来源的多样性或外部验证结果 开发高精度、快速、非侵入性的肝癌诊断工具 肝组织样本(肝癌及肝硬化病例) 数字病理 肝癌 高光谱成像 深度卷积神经网络(CNN) 高光谱图像 未明确说明具体样本量
1506 2025-04-10
PhysCL: Knowledge-Aware Contrastive Learning of Physiological Signal Models for Cuff-Less Blood Pressure Estimation
2025-Mar-25, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 提出了一种名为PhysCL的新型对比学习方法,用于减少对标记PPG数据的依赖并提高无袖带血压估计的准确性 通过引入知识感知增强库解决对比学习中的语义一致性问题,并提出对比特征重建方法以增强特征多样性并防止模型崩溃 需要进一步验证在不同人群和更广泛数据集上的泛化能力 提高无袖带血压估计的准确性,减少对标记数据的依赖 光电容积描记术(PPG)信号 机器学习 心血管疾病 对比学习 深度学习模型 生理信号 来自106名受试者的数据,涵盖MIMIC III、MIMIC IV和UQVS数据集
1507 2025-04-10
An Explainable Unified Framework of Spatio-Temporal Coupling Learning With Application to Dynamic Brain Functional Connectivity Analysis
2025-Feb, IEEE transactions on medical imaging IF:8.9Q1
research paper 提出了一种可解释的时空耦合学习统一框架,并将其应用于动态脑功能连接分析 构建了一个基于时空相关性的深度学习网络,能够整合节点表示与节点间连接的时间变化耦合关系,并提供更好的分析结果可解释性 未明确提及具体局限性 开发一个可解释的深度学习框架,用于分析时空耦合数据,特别是动态脑功能连接 fMRI和MEG时间序列数据 machine learning NA 深度学习 未明确指定具体模型类型(如CNN、LSTM等) 时间序列数据 未明确提及具体样本数量
1508 2025-04-10
Potential value of novel multiparametric MRI radiomics for preoperative prediction of microsatellite instability and Ki-67 expression in endometrial cancer
2025-01-25, Scientific reports IF:3.8Q1
research paper 本研究开发了一种新型混合放射组学方法,用于预测子宫内膜癌的微卫星不稳定性和Ki-67表达 结合多参数MRI、深度学习和多通道图像分析,采用新兴的注意力机制提取特征,并使用XGBoost分类器进行预测 研究为回顾性研究,样本量较小(156例患者) 探索先进人工智能技术在预测子宫内膜癌微卫星不稳定性和Ki-67表达中的潜在价值 子宫内膜癌患者 digital pathology endometrial cancer multiparametric MRI, deep learning, multichannel image analysis XGBoost image 156名子宫内膜癌患者
1509 2025-04-10
An optimized LSTM-based deep learning model for anomaly network intrusion detection
2025-Jan-10, Scientific reports IF:3.8Q1
研究论文 提出了一种基于LSTM的优化深度学习模型,用于网络异常入侵检测 采用三种优化方法(PSO、JAYA和SSA)优化LSTM的超参数,以提高检测性能 未提及模型在实际网络环境中的泛化能力测试 开发高效的网络入侵检测系统以减少误报率 网络入侵检测 机器学习 NA 深度学习 LSTM 网络流量数据 NSL KDD、CICIDS和BoT-IoT数据集
1510 2025-04-10
Application of Artificial Intelligence and its Subsets in Various Stages of Knee Arthroplasty from Pre-op to Post-op: An Overview
2025, Journal of orthopaedics and sports medicine
综述 本文概述了人工智能及其子集在膝关节置换术从术前到术后各阶段的应用 探讨了人工智能在膝关节置换术各阶段(术前、术中和术后)的多样化应用,包括患者教育、手术辅助和结果评估 NA 综述人工智能在膝关节置换术中的应用,以提高诊断准确性、手术效率和患者预后 膝关节置换术的各个阶段(术前、术中和术后) 数字病理学 骨关节炎 机器学习、深度学习 NA NA NA
1511 2025-04-10
Active learning regression quality prediction model and grinding mechanism for ceramic bearing grinding processing
2025, PloS one IF:2.9Q1
研究论文 探讨陶瓷轴承磨削加工中的质量预测,特别是磨削参数对表面粗糙度的影响 使用主动学习回归模型进行模型构建和优化,并结合深度学习模型进行磨削加工质量预测实验 实验仅覆盖特定磨削参数范围,可能未涵盖所有实际生产中的变量 为陶瓷轴承磨削加工提供质量预测理论支持及磨削参数优化依据 陶瓷轴承磨削加工过程及表面粗糙度 机器学习 NA 主动学习回归模型及深度学习模型 回归模型及深度学习模型 实验数据 多种磨削参数组合(包括磨轮线速度、磨削深度和进给速率)
1512 2025-04-10
Ensemble deep learning for Alzheimer's disease diagnosis using MRI: Integrating features from VGG16, MobileNet, and InceptionResNetV2 models
2025, PloS one IF:2.9Q1
研究论文 本研究开发并评估了一种创新的深度学习集成模型,用于从MRI扫描中精确识别阿尔茨海默病的标志物 集成三种预训练模型(VGG16、MobileNet和InceptionResNetV2)的特征,以克服单个模型在处理不同图像形状和纹理时的局限性 未提及具体的数据集规模或多样性限制 提高阿尔茨海默病的诊断准确性,支持早期检测和及时治疗 阿尔茨海默病患者 数字病理学 老年疾病 MRI扫描 集成模型(VGG16、MobileNet、InceptionResNetV2) 图像 NA
1513 2025-04-10
Deep learning signature to predict postoperative anxiety in patients receiving lung cancer surgery
2025, Frontiers in surgery IF:1.6Q2
研究论文 本研究旨在建立并验证一种基于MRI的深度学习特征,用于预测接受肺癌手术患者的术后焦虑 利用ResNet-152算法训练深度学习特征,首次将MRI-T1WI图像与术后焦虑预测相结合 样本量较小(202例患者),且仅使用了MRI-T1WI图像 预测接受肺癌手术患者的术后焦虑 接受肺癌手术的患者 数字病理学 肺癌 MRI ResNet-152 图像 202例接受肺癌手术的患者
1514 2025-04-10
A study on early diagnosis for fracture non-union prediction using deep learning and bone morphometric parameters
2025, Frontiers in medicine IF:3.1Q1
研究论文 本研究利用深度学习和骨形态计量参数开发了一种用于骨折不愈合早期诊断的模型 提出了Vision Mamba Triplet Attention and Edge Feature Decoupling Module UNet (VM-TE-UNet)用于骨折区域分割,并建立了基于微CT指标的早期诊断模型 研究仅使用了12只大鼠的骨折动物模型,样本量较小 开发骨折不愈合的早期诊断模型 大鼠骨折模型 数字病理 骨折 micro-CT成像 VM-TE-UNet 图像 12只大鼠的2448张micro-CT图像
1515 2025-04-10
Point-SPV: end-to-end enhancement of object recognition in simulated prosthetic vision using synthetic viewing points
2025, Frontiers in human neuroscience IF:2.4Q2
研究论文 本文介绍了一种名为Point-SPV的端到端深度学习模型,旨在增强模拟假体视觉中的物体识别能力 Point-SPV通过模拟视点(代表潜在的注视位置)并在这些点周围的图像块上训练模型,初步实现了基于注视的优化,专注于任务导向的视觉表示 NA 提升模拟假体视觉系统中的物体识别性能 视觉假体系统及视觉障碍患者 计算机视觉 视力障碍 深度学习 端到端深度学习模型 图像 NA
1516 2025-04-10
Transfer learning improves performance in volumetric electron microscopy organelle segmentation across tissues
2025, Bioinformatics advances IF:2.4Q2
research paper 该研究展示了迁移学习在体积电子显微镜(VEM)图像中跨组织器官分割性能的提升 通过在多组织器官的VEM数据上进行预训练并在目标数据集上微调,实现了高性能的多种细胞器分割,且所需的新训练数据量相对较少 需要一定量的手动标注数据进行微调,且性能可能受预训练数据与目标数据之间的差异影响 提高体积电子显微镜图像中细胞器分割的自动化水平和性能 哺乳动物组织中的细胞器(如线粒体和内质网) digital pathology NA serial block face scanning electron microscopy deep learning segmentation algorithms volumetric electron microscopy images 四个VEM数据集(包括一个新的大鼠肝脏数据集,尺寸为7000×7000×219像素)
1517 2025-04-10
HTRecNet: a deep learning study for efficient and accurate diagnosis of hepatocellular carcinoma and cholangiocarcinoma
2025, Frontiers in cell and developmental biology IF:4.6Q1
研究论文 本研究提出了一种名为HTRecNet的深度学习框架,用于高效准确诊断肝细胞癌(HCC)和胆管癌(CCA) HTRecNet结合了复杂的数据增强策略以优化特征提取,即使在样本量有限的情况下也能保持稳健性能 研究样本中CCA的样本量相对较少(180例),可能影响模型在CCA诊断上的泛化能力 开发自动化诊断方法以提高肝细胞癌和胆管癌的诊断效率和准确性 肝细胞癌(HCC)和胆管癌(CCA)的组织病理学图像 数字病理学 肝癌 深度学习 HTRecNet(自定义深度学习框架) 图像 5,432张组织病理学图像(其中5,096张用于训练和验证,336张用于外部测试)
1518 2025-04-10
BetaAlign: a deep learning approach for multiple sequence alignment
2024-12-26, Bioinformatics (Oxford, England)
研究论文 本文提出了一种名为BetaAlign的深度学习方法,用于多序列比对(MSA),该方法借鉴了自然语言处理技术 首次将深度学习技术应用于多序列比对,利用NLP中的transformer模型,通过模拟生成的比对数据进行训练,能够针对具有特定进化动力学属性的数据集生成比对工具 未明确提及具体限制,但可能受限于训练数据的规模和多样性 开发一种基于AI的多序列比对方法,挑战传统的比对算法 生物序列的多序列比对 生物信息学 NA 自然语言处理(NLP)技术,transformer模型 transformer 生物序列数据 NA
1519 2025-04-10
Use of Artificial Intelligence in Imaging Dementia
2024-11-27, Cells IF:5.1Q2
research paper 本文探讨了人工智能在痴呆症影像诊断中的应用及其潜力 利用图卷积网络框架为阿尔茨海默病及其前驱阶段提供多模态稀疏可解释性支持,并开发了基于卷积神经网络的方法进行外部验证 人工智能在临床实践中的应用面临技术、疾病相关和制度性挑战 改善痴呆症患者的诊断和预后 老年痴呆症患者,包括阿尔茨海默病、血管性痴呆、路易体痴呆等 digital pathology geriatric disease machine learning, deep learning CNN, GCN image NA
1520 2025-04-10
Integrated Biochemical and Computational Methods for Deciphering RNA-Processing Codes
2024 Nov-Dec, Wiley interdisciplinary reviews. RNA
review 本文系统总结了用于解析五种重要RNA编码(包括可变剪接、可变多聚腺苷酸化、RNA定位、RNA修饰和RBP结合)的生化和计算方法 结合机器学习和深度学习模型,从DNA序列中学习RNA转化的规则或编码,并探讨了使用大型语言模型和广泛领域知识开发预测模型时遇到的挑战 未提及具体样本量或实验数据的具体限制 将大数据转化为生物学知识,预测RNA产物,解码分子机制,预测疾病变异对RNA加工事件的影响,并识别驱动突变 RNA加工过程中的五种重要编码 自然语言处理 NA 高通量测序技术 机器学习和深度学习模型 DNA序列数据 NA
回到顶部