深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24188 篇文献,本页显示第 15281 - 15300 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
15281 2024-09-28
On the Analyses of Medical Images Using Traditional Machine Learning Techniques and Convolutional Neural Networks
2023, Archives of computational methods in engineering : state of the art reviews IF:9.7Q1
综述 本文综述了卷积神经网络(CNN)在医学图像分析中的应用及其内部结构和挑战 本文介绍了深度学习中不同的激活函数、超参数优化、正则化、动量和损失函数对CNN性能的改进 NA 探讨CNN在医学图像分析中的应用及其内部结构和挑战 卷积神经网络及其在医学图像分析中的应用 计算机视觉 NA 卷积神经网络(CNN) CNN 图像 NA
15282 2024-09-28
Multi-modal medical image classification using deep residual network and genetic algorithm
2023, PloS one IF:2.9Q1
研究论文 本文提出了一种基于深度残差网络和遗传算法的多模态医学图像分类方法 利用深度学习模型ResNet50结合遗传算法,提高了多模态医学图像分类的准确性 NA 旨在缩小语义鸿沟并提高多模态医学图像分类的性能 多模态医学图像 计算机视觉 NA 深度学习 ResNet50 图像 28378张多模态医学图像
15283 2024-09-28
Generic Interpretable Reaction Condition Predictions with Open Reaction Condition Datasets and Unsupervised Learning of Reaction Center
2023, Research (Washington, D.C.)
研究论文 本文提出了一个基于Transformer的反应条件预测模型Parrot,并创建了两个标准化的反应条件数据集 提出了一个强大的、可解释的Transformer模型Parrot,用于反应条件预测,并创建了两个标准化的反应条件数据集 训练数据集的多样性可能仍然有限 解决深度学习辅助合成规划中反应条件预测的挑战 反应条件预测模型和标准化数据集 机器学习 NA Transformer Transformer 文本 两个标准化的反应条件数据集,涵盖广泛的反应类别
15284 2024-09-28
Deep learning-empowered crop breeding: intelligent, efficient and promising
2023, Frontiers in plant science IF:4.1Q1
研究论文 本文探讨了深度学习在作物育种中的应用,旨在提高育种效率和作物品质 提出了基于深度学习的作物育种策略,以加速作物改良和提高育种效率 当前面临数据复杂性、数据获取困难和预测精度低等挑战 提高作物育种效率和作物品质 作物育种过程 机器学习 NA 深度学习 NA NA NA
15285 2024-09-28
Nucleotide-level prediction of CircRNA-protein binding based on fully convolutional neural network
2023, Frontiers in genetics IF:2.8Q2
研究论文 本文提出了一种基于全卷积神经网络的CircRNA-蛋白质结合位点预测方法 将CircRNA-蛋白质结合位点预测视为核苷酸级别的二分类任务,并使用全卷积神经网络进行预测 现有方法在准确预测具有特殊功能的motif位点方面表现不佳 研究CircRNA-蛋白质结合位点的预测及其在基因表达调控中的作用 CircRNA-蛋白质结合位点及其motif功能 计算机视觉 NA 全卷积神经网络 全卷积神经网络 序列 NA
15286 2024-09-28
Stacked ensemble deep learning for pancreas cancer classification using extreme gradient boosting
2023, Frontiers in artificial intelligence IF:3.0Q2
研究论文 本文介绍了一种用于胰腺CT图像分类的堆叠集成深度学习方法 提出了堆叠集成深度学习(SEDL)方法,结合Inception V3、VGG16和ResNet34作为弱学习器,并使用极端梯度提升(XGBoost)作为强学习器进行最终分类 未提及具体限制 提高胰腺CT图像分类的预测性能 胰腺CT医学图像 计算机视觉 胰腺癌 极端梯度提升(XGBoost) 堆叠集成模型 图像 222张图像,来自80个胰腺CT扫描,分辨率为512*512像素,包括53名男性和27名女性
15287 2024-09-28
Convolutional neural network model by deep learning and teaching robot in keyboard musical instrument teaching
2023, PloS one IF:2.9Q1
研究论文 研究通过深度学习和教学机器人在键盘乐器教学中的应用,提出了一种卷积神经网络模型,以改进学前教育的键盘乐器教学 提出了将智能技术与键盘乐器教学相结合的方法,通过教学机器人和深度学习模型实现个性化教学 未详细说明教学机器人的具体设计和实现细节,以及深度学习模型的训练数据和评估方法 探讨当前学前教育中键盘乐器教学的现状,提出改进方案,并验证教学机器人在键盘乐器教学中的应用效果 学前教育中的键盘乐器教学 机器学习 NA 深度学习 卷积神经网络(CNN) 图像 参与键盘乐器教学的学生
15288 2024-09-28
Revealing the impact of psychiatric comorbidities on treatment outcome in early psychosis using counterfactual model explanation
2023, Frontiers in psychiatry IF:3.2Q2
研究论文 研究利用多模态深度学习架构和反事实模型解释技术,探讨精神共病对早期精神病治疗结果的影响 引入反事实模型解释技术,分析MINI评分对缓解概率的影响,并识别出对缓解概率影响最大的特定共病 研究结果主要基于OPTiMiSE研究的多中心样本,可能存在样本偏倚 探讨精神共病对早期精神病治疗结果的影响,并改进个体化预测模型 早期精神病患者及其精神共病 机器学习 精神病 多模态深度学习 深度学习模型 文本 来自OPTiMiSE研究的多中心早期精神病患者样本
15289 2024-09-28
Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines?
2022-Dec, Nano today IF:13.2Q1
综述 本文综述了人工智能在基因治疗和mRNA疫苗纳米载体开发中的潜在应用 探讨了人工智能在设计靶向基因递送载体和改进CRISPR/Cas系统中的创新应用 NA 探讨人工智能如何革新基因治疗和mRNA疫苗纳米载体的发展 基因治疗和mRNA疫苗的纳米载体 机器学习 NA 人工智能 神经网络 NA NA
15290 2024-09-28
COVID-19 chest X-ray detection through blending ensemble of CNN snapshots
2022-Sep, Biomedical signal processing and control IF:4.9Q1
研究论文 本文提出了一种基于卷积神经网络(CNN)快照融合的集成方法,用于从胸部X光片(CXR)中检测COVID-19,以辅助计算机辅助检测(CADe) 本文的创新点在于利用DenseNet-201架构生成多个快照,并通过随机森林(RF)元学习器进行决策级融合,提高了COVID-19检测的准确性 本文的局限性在于仅使用了两个公开的COVID-19 CXR数据集进行实验,未来可能需要更多数据集来验证模型的泛化能力 本文的研究目的是提高COVID-19检测的准确性,以辅助医疗从业者的诊断 本文的研究对象是COVID-19病毒的胸部X光片(CXR)图像 计算机视觉 COVID-19 卷积神经网络(CNN) DenseNet-201 图像 两个公开的COVID-19 CXR数据集,包括一个大型数据集(COVID-X)和一个较小的数据集
15291 2024-09-28
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2
2022-07-13, Chemical reviews IF:51.4Q1
综述 本文对SARS-CoV-2的分子建模、模拟和预测方法进行了全面系统的综述 本文整合了大量病毒序列的基因分型、蛋白质-蛋白质相互作用的生物物理建模、深度突变数据、深度学习和高级数学等方法,揭示了SARS-CoV-2的全球进化和传播机制 尽管本文提供了全面的综述,但仍需进一步深入研究以全面理解SARS-CoV-2及其相关机制 旨在为读者提供关于SARS-CoV-2分子建模、模拟和预测领域的最新文献更新 SARS-CoV-2的分子建模、模拟和预测方法 机器学习 NA 深度学习 NA 序列数据 NA
15292 2024-09-28
Histopathologic Oral Cancer Prediction Using Oral Squamous Cell Carcinoma Biopsy Empowered with Transfer Learning
2022-May-18, Sensors (Basel, Switzerland)
研究论文 本文提出了一种利用迁移学习模型和AlexNet卷积神经网络从口腔鳞状细胞癌(OSCC)活检图像中提取特征,以预测口腔癌的方法 本文的创新点在于使用迁移学习模型和AlexNet卷积神经网络来提高口腔癌检测的准确性 本文的局限性在于仅使用了AlexNet模型,未探讨其他深度学习模型的效果 本文的研究目的是提高口腔癌检测的准确性 本文的研究对象是口腔鳞状细胞癌(OSCC)活检图像 计算机视觉 口腔癌 迁移学习 卷积神经网络(CNN) 图像 未明确提及具体样本数量
15293 2024-09-28
Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement
2022-May-12, Nature communications IF:14.7Q1
研究论文 本文探讨了基于电磁波的极端深度学习方法,通过非线性时间-Floquet纠缠实现高效的模拟信号处理 本文引入了时间-Floquet物理来诱导信号输入在不同频率间的强非线性纠缠,从而实现了一种高效且灵活的波平台用于模拟极端深度学习 NA 解决传统电磁材料非线性弱的问题,实现复杂神经形态计算任务 电磁波在人工工程介质中的传播及其在模拟信号处理中的应用 机器学习 NA NA 极端学习机和储层计算 模拟信号 NA
15294 2024-09-28
Omicron BA.2 (B.1.1.529.2): High Potential for Becoming the Next Dominant Variant
2022-May-05, The journal of physical chemistry letters IF:4.8Q1
研究论文 本文研究了Omicron变种的三个亚型BA.1、BA.2和BA.3,特别是BA.2的再感染能力及其成为下一个主导变种的潜力 构建了一种基于代数拓扑的深度学习模型,系统评估了BA.2和BA.3的传染性、疫苗突破能力和抗体抵抗能力 目前没有关于BA.2和BA.3的实验数据 评估BA.2和BA.3是否会成为新的主导变种 Omicron变种的亚型BA.1、BA.2和BA.3 机器学习 NA 深度学习 代数拓扑模型 NA NA
15295 2024-09-28
Deep learning-based image processing in optical microscopy
2022-Apr, Biophysical reviews IF:4.9Q1
综述 本文综述了深度学习在光学显微镜图像处理中的应用 深度学习在光学显微镜图像处理中的应用,特别是在图像分类、分割和分辨率增强方面的应用 NA 探讨深度学习在光学显微镜图像处理中的应用 光学显微镜图像 计算机视觉 NA 深度学习 NA 图像 NA
15296 2024-09-28
Analysis of Traditional Cultural Acceptance Based on Deep Learning
2022, Computational intelligence and neuroscience
研究论文 本文利用深度学习技术分析传统文化的接受度 提出了基于Faster R-CNN模型的深度学习方法,该方法在分析传统文化接受度方面优于现有算法 未提及具体的研究局限性 研究如何利用深度学习技术分析传统文化的接受度 研究对象为未接触现代科技的传统部落文化及其接受度 机器学习 NA 深度学习 Faster R-CNN NA 未提及具体样本数量
15297 2024-09-28
Artificial Intelligence Technologies and Their Application for Reform and Development of Table Tennis Training in Complex Environments
2022, Computational intelligence and neuroscience
研究论文 本文探讨了人工智能技术在复杂环境下乒乓球训练中的应用,通过引入细粒度评估系统(FGE)和深度学习模型,实现了在线智能训练 本文创新性地将细粒度评估系统(FGE)与深度学习模型结合,用于分析球员的体态并进行在线训练,相比传统统计模型,FGE在精度和召回率上表现更优 本文未详细讨论FGE系统在实际应用中的可行性和成本问题 研究如何利用人工智能技术改进复杂环境下的乒乓球训练 乒乓球训练中的体态分析和在线训练系统 机器学习 NA 深度学习 深度学习模型 体态数据 未明确提及具体样本数量
15298 2024-09-28
A Deep Learning Quantification Algorithm for HER2 Scoring of Gastric Cancer
2022, Frontiers in neuroscience IF:3.2Q2
研究论文 本文提出了一种用于胃癌HER2评分的深度学习量化算法 首次提出了一种自动化的HER2评分框架,并使用重参数化方案加速推理过程 NA 开发一种辅助病理学家诊断胃癌HER2评分的深度学习算法 胃癌HER2评分 计算机视觉 胃癌 深度学习 卷积神经网络 图像 NA
15299 2024-09-28
Individual Factors Associated With COVID-19 Infection: A Machine Learning Study
2022, Frontiers in public health IF:3.0Q2
研究论文 本研究旨在通过机器学习技术识别与COVID-19感染相关的潜在因素 本研究采用了多种机器学习和深度学习算法,包括随机森林、XGBoost和深度神经网络,以选择最佳预测模型 本研究的数据集主要包含临床数据和健康参数,可能未涵盖所有潜在影响因素 识别与COVID-19感染相关的潜在因素,并开发预测模型以帮助预防SARS-CoV-2感染 COVID-19感染的潜在风险因素 机器学习 COVID-19 随机森林、XGBoost、支持向量机、深度神经网络 随机森林、XGBoost、深度神经网络 临床数据、人体测量数据、健康参数 包含临床数据、人体测量数据和健康参数的样本
15300 2024-09-28
Cultural and Creative Product Design and Image Recognition Based on Deep Learning
2022, Computational intelligence and neuroscience
研究论文 研究基于深度学习的文化创意产品设计和图像识别 提出了一种基于深度学习的图像识别技术,用于文化创意产品设计,相较于现有的LDA、HMM和优化算法,该系统提供了更准确的解决方案 NA 研究如何利用深度学习技术进行文化创意产品设计和图像识别 文化创意产品和图像识别技术 计算机视觉 NA 深度学习 NA 图像 NA
回到顶部