本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15421 | 2025-03-12 |
Testing convolutional neural network based deep learning systems: a statistical metamorphic approach
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2658
PMID:40062296
|
研究论文 | 本文提出了一种统计变形测试(SMT)技术,用于测试基于卷积神经网络(CNN)的深度学习系统,特别是在医疗领域的肺炎检测模型中验证其有效性 | 提出了一种不需要固定随机种子的统计变形测试技术,结合七种变形关系和统计方法,验证深度学习模型的正确性,并提出了变形关系最小化算法以节省计算资源 | 研究主要针对CNN模型,未涉及其他类型的深度学习模型,且实验范围局限于肺炎检测 | 解决传统变形测试技术在验证深度学习模型时的局限性,特别是在随机初始化权重的情况下 | 基于CNN的深度学习模型 | 机器学习 | 肺炎 | 统计变形测试(SMT) | CNN | 图像 | 未明确提及样本数量 | NA | NA | NA | NA |
15422 | 2025-03-12 |
Design and analysis of teaching early warning system based on multimodal data in an intelligent learning environment
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2692
PMID:40062295
|
研究论文 | 本文设计并分析了一种基于多模态数据的智能学习环境中的教学预警系统 | 提出了一种高效的长视频情感过渡点搜索算法和基于面部特征的中性情感片段过滤算法,并引入了基于深度学习的多模态情感识别模型,结合注意力机制进行特征级模态融合 | 未提及具体的数据集大小或实验结果的广泛验证 | 提高在线教育环境中教师情感表达的智能评估和改进 | 教学视频中的情感片段和情感识别 | 自然语言处理 | NA | 深度学习 | 多模态情感识别模型 | 视频、语音、面部图像 | 未提及具体样本数量 | NA | NA | NA | NA |
15423 | 2025-03-12 |
Enhancing the prediction of vitamin D deficiency levels using an integrated approach of deep learning and evolutionary computing
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2698
PMID:40062307
|
研究论文 | 本文提出了一种结合深度学习和进化计算的新方法,用于预测维生素D缺乏水平 | 创新点在于结合了卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的混合深度学习模型,并使用遗传算法(GA)优化特征和超参数选择 | 未提及具体局限性 | 研究目的是开发一种非侵入性的预测方法,以确定维生素D缺乏的严重程度 | 维生素D缺乏水平 | 机器学习 | NA | 深度学习,进化计算 | CNN, BiLSTM, GA | 医疗数据 | 基准数据集 | NA | NA | NA | NA |
15424 | 2025-03-12 |
Review of models for estimating 3D human pose using deep learning
2025, PeerJ. Computer science
DOI:10.7717/peerj-cs.2574
PMID:40062308
|
综述 | 本文综述了基于深度学习的3D人体姿态估计模型的最新进展,探讨了准确性、实时性能和数据限制等主要挑战 | 本文总结了3D人体姿态估计领域的最新进展,并提供了主要算法在精度和计算效率方面的比较,为未来研究提供了方向 | 尽管深度学习模型取得了显著进展,但在处理遮挡、实时估计和泛化能力方面仍存在挑战 | 探讨3D人体姿态估计模型的最新进展及其在计算机视觉和人工智能领域的应用 | 3D人体姿态估计模型 | 计算机视觉 | NA | 深度学习 | NA | 图像, 视频 | NA | NA | NA | NA | NA |
15425 | 2025-10-07 |
SELFNet: Denoising Shear Wave Elastography Using Spatial-temporal Fourier Feature Networks
2024-12, Ultrasound in medicine & biology
|
研究论文 | 提出一种基于物理信息神经网络的空间-时间傅里叶特征网络SELFNet,用于剪切波弹性成像的去噪和位移信号估计 | 首次将空间-时间随机傅里叶特征与物理信息神经网络结合,通过稀疏映射增强鲁棒性,同时学习剪切模量映射 | 仅在组织模拟体模和离体组织数据集上验证,尚未进行临床人体试验 | 开发一种能够有效去除剪切波弹性成像噪声并提高组织刚度估计准确性的方法 | 组织模拟体模中的病变和离体组织 | 医学影像处理 | 癌症, 肝脏疾病 | 剪切波弹性成像 | 物理信息神经网络 | 粒子位移信号, 空间-时间数据 | 组织模拟体模和离体组织数据集 | 物理信息神经网络框架 | SELFNet, 傅里叶特征网络 | 相对ℓ2误差, 重建均方根误差 | NA |
15426 | 2025-03-12 |
Artificial Intelligence in Histopathology
2024-Dec, Journal of pharmacy & bioallied sciences
DOI:10.4103/jpbs.jpbs_727_24
PMID:40061791
|
综述 | 本文探讨了人工智能在数字病理学中的应用,特别是如何通过深度学习和机器学习技术提高病理切片的成像质量,并帮助医生更快做出诊断 | 本文强调了人工智能在减少病理学家工作量、提高病理报告公正性和一致性方面的潜力,以及通过从易获取数据中识别隐藏信息来影响治疗决策的能力 | 本文未具体提及人工智能在数字病理学中应用的具体技术限制或挑战 | 探讨人工智能在数字病理学中的应用及其对病理诊断和治疗决策的影响 | 数字病理学中的全切片病理图像 | 数字病理学 | NA | 深度学习和机器学习 | NA | 图像 | NA | NA | NA | NA | NA |
15427 | 2025-03-12 |
A Protocol for Body MRI/CT and Extraction of Imaging-Derived Phenotypes (IDPs) from the China Phenobank Project
2024-Dec, Phenomics (Cham, Switzerland)
DOI:10.1007/s43657-023-00141-x
PMID:40061820
|
研究论文 | 本文描述了中国表型库项目中的全身成像协议及图像处理流程,旨在促进基于该平台的研究规划 | 提出了一个适用于多器官的全身成像协议,并利用深度学习分割模型处理大量数据 | 未提及具体的研究结果或数据验证 | 为基于中国表型库项目平台的研究提供参考 | 心脏、肝脏、脾脏、胰腺、肾脏、肺、前列腺和子宫等多器官 | 数字病理 | NA | MRI, CT | 深度学习分割模型 | 图像 | NA | NA | NA | NA | NA |
15428 | 2025-03-12 |
CTLESS: A scatter-window projection and deep learning-based transmission-less attenuation compensation method for myocardial perfusion SPECT
2024-Nov-25, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2024.3496870
PMID:40030354
|
研究论文 | 本文提出了一种基于散射窗投影和深度学习的无传输衰减补偿方法(CTLESS),用于心肌灌注SPECT成像 | CTLESS方法无需单独的X射线CT扫描,通过深度学习从散射能量窗投影中重建衰减图,避免了额外的辐射剂量和成本,并解决了SPECT与CT图像不对齐的问题 | 该方法仍需在更大规模的临床数据上进行进一步验证,以确认其广泛适用性 | 开发一种无需CT扫描的心肌灌注SPECT成像衰减补偿方法,以提高诊断准确性和降低成本 | 心肌灌注SPECT图像 | 数字病理学 | 心血管疾病 | 深度学习 | 多通道输入多解码器网络 | 图像 | 回顾性研究中使用匿名临床SPECT/CT应力心肌灌注图像 | NA | NA | NA | NA |
15429 | 2025-10-07 |
Deep learning Radiomics Based on Two-Dimensional Ultrasound for Predicting the Efficacy of Neoadjuvant Chemotherapy in Breast Cancer
2024-11, Ultrasonic imaging
IF:2.5Q2
DOI:10.1177/01617346241276168
PMID:39257175
|
研究论文 | 基于术前超声影像组学、深度学习和临床特征的综合模型预测乳腺癌新辅助化疗后病理完全缓解 | 首次结合超声影像组学、深度学习特征和临床参数构建综合预测模型DLRC | 样本量较小(155例患者),单中心研究 | 预测乳腺癌患者新辅助化疗后的病理完全缓解状态 | 155例经病理确诊的乳腺癌患者 | 医学影像分析 | 乳腺癌 | 二维超声 | 深度学习, 随机森林, LASSO | 超声图像 | 155例患者(训练集与验证集按7:3随机分配) | NA | NA | AUC, 决策曲线分析 | NA |
15430 | 2025-10-07 |
TAG-SPARK: Empowering High-Speed Volumetric Imaging With Deep Learning and Spatial Redundancy
2024-Nov, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202405293
PMID:39283040
|
研究论文 | 提出结合可调声学梯度透镜高速显微镜和TAG-SPARK去噪算法的对比增强视频速率体积成像系统 | 利用z切片空间冗余性进行自监督模型训练,专为4D数据集设计,实现超过700%的信噪比提升 | 未明确说明算法在不同神经元类型或组织深度中的普适性 | 解决高速荧光钙成像中采集速度与图像质量之间的权衡问题 | 浦肯野细胞钙活动观测 | 计算显微镜 | NA | 双光子高速荧光钙成像 | 深度学习 | 4D体积图像数据 | NA | NA | TAG-SPARK | 信噪比增强 | NA |
15431 | 2025-10-07 |
Clinical usability of deep learning-based saliency maps for occlusion myocardial infarction identification from the prehospital 12-Lead electrocardiogram
2024 Nov-Dec, Journal of electrocardiology
IF:1.3Q3
|
研究论文 | 评估基于深度学习的显著性图谱在院前12导联心电图中识别闭塞性心肌梗死的临床可用性 | 首次在临床环境中系统评估显著性图谱对深度学习心电图模型可解释性的增强作用 | 研究样本量较小(仅100例心电图),仅涉及三位临床医生评估 | 评估深度学习显著性图谱在临床心电图分析中的实用价值 | 胸痛患者的12导联心电图 | 医学人工智能 | 心血管疾病 | 心电图分析 | CNN | 心电图信号 | 100例心电图 | NA | 卷积神经网络 | AUC, F1分数 | NA |
15432 | 2025-03-12 |
Deep Learning Reconstruction in Abdominopelvic Contrast-Enhanced CT for The Evaluation of Hemorrhages
2024-11, Radiologic technology
IF:0.7Q4
PMID:39472011
|
研究论文 | 本研究探讨了深度学习重建在腹盆部增强CT中描绘动脉和评估出血的效果,并与混合迭代重建进行了比较 | 首次在腹盆部增强CT中应用深度学习重建技术,显著改善了动脉描绘和出血评估的图像质量 | 样本量较小(16例患者),需要更大规模的前瞻性研究来验证结果 | 评估深度学习重建在腹盆部增强CT中描绘动脉和评估出血的效果 | 16例急性出血患者 | 医学影像 | 出血 | 深度学习重建、混合迭代重建、滤波反投影 | 深度学习 | CT图像 | 16例患者(8男8女,平均年龄54.2±22.1岁) | NA | NA | NA | NA |
15433 | 2025-03-12 |
Carafe enables high quality in silico spectral library generation for data-independent acquisition proteomics
2024-Oct-18, bioRxiv : the preprint server for biology
DOI:10.1101/2024.10.15.618504
PMID:39463980
|
研究论文 | 本文介绍了Carafe,一种通过直接在DIA数据上训练深度学习模型来生成高质量实验特异性光谱库的工具 | Carafe直接在DIA数据上训练深度学习模型,而不是依赖DDA数据或基于DDA数据训练的模型,从而提高了碎片离子强度预测和肽段检测的性能 | NA | 开发一种工具,用于生成高质量的光谱库,以支持数据独立采集(DIA)质谱分析 | DIA质谱数据 | 质谱分析 | NA | 深度学习 | 深度学习模型 | 质谱数据 | 多种DIA数据集 | NA | NA | NA | NA |
15434 | 2025-10-07 |
CTLESS: A scatter-window projection and deep learning-based transmission-less attenuation compensation method for myocardial perfusion SPECT
2024-Sep-12, ArXiv
PMID:39314501
|
研究论文 | 开发了一种基于散射窗口投影和深度学习的无传输扫描衰减补偿方法用于心肌灌注SPECT成像 | 首次提出使用散射能量窗口投影和深度学习网络实现无需CT扫描的SPECT衰减补偿 | 回顾性研究,需要进一步临床评估验证 | 开发无CT扫描的心肌灌注SPECT衰减补偿方法以降低辐射剂量和成本 | 心肌灌注SPECT/CT应力成像数据 | 医学影像分析 | 心血管疾病 | SPECT/CT成像,散射能量窗口投影 | 深度学习 | 医学影像 | 匿名临床SPECT/CT应力心肌灌注图像 | NA | 多通道输入多解码器网络 | AUC,均方根误差,结构相似性指数 | NA |
15435 | 2025-10-07 |
CryoTEN: Efficiently Enhancing Cryo-EM Density Maps Using Transformers
2024-Sep-11, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.06.611715
PMID:39314387
|
研究论文 | 提出一种基于三维U-Net风格Transformer的CryoTEN方法,用于高效增强冷冻电镜密度图质量 | 首次将三维U-Net风格Transformer架构应用于冷冻电镜密度图增强,在保持高质量的同时运行速度比现有最佳深度学习方法快10倍以上且GPU内存需求更低 | NA | 开发高效算法以提升冷冻电镜密度图质量,从而改善蛋白质结构建模 | 冷冻电镜密度图 | 计算机视觉 | NA | 冷冻电镜 | Transformer | 三维密度图 | 1,295个冷冻电镜图作为训练集,150个独立测试图 | NA | U-Net, Transformer | 密度图质量提升,蛋白质结构建模质量 | GPU |
15436 | 2025-10-07 |
Automatic Quantitative Assessment of Muscle Strength Based on Deep Learning and Ultrasound
2024-09, Ultrasonic imaging
IF:2.5Q2
DOI:10.1177/01617346241255590
PMID:38881032
|
研究论文 | 提出一种基于深度学习和超声技术的肌肉力量自动定量评估方法 | 首次将深度学习与超声技术结合实现肌肉力量的自动化评估,减少对操作者专业经验的依赖 | 仅针对肱二头肌进行测试,样本类型和肌肉种类有限 | 开发自动化的肌肉力量评估方法以辅助运动员康复和力量训练 | 多名运动员在不同力量水平下的肱二头肌 | 计算机视觉 | NA | B型超声 | 深度学习模型 | 超声图像 | 多名运动员的肱二头肌超声数据 | NA | NA | 准确率 | NA |
15437 | 2025-10-07 |
Deep learning-based multi-parametric magnetic resonance imaging (mp-MRI) nomogram for predicting Ki-67 expression in rectal cancer
2024-09, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04232-9
PMID:38489038
|
研究论文 | 开发基于深度学习的多参数磁共振成像列线图预测直肠癌Ki-67表达水平 | 首次结合深度学习特征与临床特征构建多中心验证的列线图模型 | 回顾性研究设计,样本量有限(491例) | 预测直肠癌Ki-67表达状态 | 直肠癌患者 | 医学影像分析 | 直肠癌 | 多参数磁共振成像(mp-MRI) | 深度学习模型 | 医学影像 | 491例来自两个中心的直肠癌患者 | NA | NA | AUC, 校准曲线, 决策曲线, 临床影响曲线 | NA |
15438 | 2025-10-07 |
CD4+ T cells exhibit distinct transcriptional phenotypes in the lymph nodes and blood following mRNA vaccination in humans
2024-Sep, Nature immunology
IF:27.7Q1
DOI:10.1038/s41590-024-01888-9
PMID:39164479
|
研究论文 | 通过单细胞转录组学分析mRNA疫苗接种后人类CD4+ T细胞在淋巴结和血液中的转录表型差异 | 首次使用深度学习反向表位定位方法Trex预测抗原特异性,并比较疫苗接种与自然感染后CD4 T细胞表型差异 | 样本量相对有限,仅分析了1277个棘突蛋白特异性CD4 T细胞 | 研究mRNA疫苗接种后CD4 T细胞在不同组织部位的转录表型特征 | 接种BNT162b2 mRNA疫苗和SARS-CoV-2感染个体的CD4 T细胞 | 生物医学 | 传染病 | 单细胞转录组学, 深度学习反向表位定位 | 深度学习 | 单细胞转录组数据 | 1277个棘突蛋白特异性CD4 T细胞(包含238个通过Trex定义) | NA | NA | NA | NA |
15439 | 2025-10-07 |
Contrastive Self-supervised Learning for Neurodegenerative Disorder Classification
2024-Jul-04, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.07.03.24309882
PMID:39006425
|
研究论文 | 本研究探索使用对比自监督学习方法对神经退行性疾病进行分类 | 首次将对比自监督学习应用于神经退行性疾病分类,无需大量专家标注数据即可学习有效的特征表示 | 研究样本量相对有限,未与其他自监督方法进行系统比较 | 开发无需标注数据的神经退行性疾病自动分类方法 | 阿尔茨海默病和额颞叶变性患者及认知正常对照组的脑部MRI扫描 | 医学影像分析 | 神经退行性疾病 | T1加权MRI扫描 | CNN, 感知机 | 医学影像 | 2694个T1加权MRI扫描,来自四个数据集:ADNI、AIBL、FTLDNI | NA | 深度卷积神经网络, 单层感知机 | 平衡准确度 | NA |
15440 | 2025-10-07 |
Deep Learning-Derived Myocardial Strain
2024-Jul, JACC. Cardiovascular imaging
DOI:10.1016/j.jcmg.2024.01.011
PMID:38551533
|
研究论文 | 开发了一种自动化的深度学习应变分析流程,用于从标准超声心动图B模式图像测量整体纵向应变 | 创建了开源、厂商无关的自动化应变测量方法,显著降低了操作者经验和厂商设备差异带来的变异性 | 与二维GLS的一致性为中等水平(ICC: 0.56),存在-3.31%的偏差 | 开发并验证自动化的深度学习应变分析流程在不同应用和人群中的性能 | 超声心动图B模式图像,包括心脏肥大和晚期心脏淀粉样变性患者 | 医学影像分析 | 心血管疾病 | 超声心动图,斑点追踪技术 | 深度学习 | 医学图像 | 多个患者群体,包括外部验证数据集 | NA | EchoNet-Dynamic | 组内相关系数, 平均绝对误差, 偏差, 一致性界限 | NA |