深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32373 篇文献,本页显示第 15481 - 15500 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
15481 2025-03-11
Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis
2023-10, Journal of neurointerventional surgery IF:4.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
15482 2025-03-11
Response to 'Application of deep learning models for detection of subdural hematoma: a systematic review and meta-analysis'
2023-10, Journal of neurointerventional surgery IF:4.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
15483 2025-03-11
Letter re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review: Label-free diagnostic technique to differentiate cancer cells from healthy cells
2022-09, European journal of cancer (Oxford, England : 1990)
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
15484 2025-03-11
Response to letter entitled: Re: Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review
2022-09, European journal of cancer (Oxford, England : 1990)
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
15485 2025-10-07
Artificial Intelligence-Enabled Analysis of Public Attitudes on Facebook and Twitter Toward COVID-19 Vaccines in the United Kingdom and the United States: Observational Study
2021-04-05, Journal of medical Internet research IF:5.8Q1
研究论文 使用人工智能分析英美两国社交媒体上对COVID-19疫苗的公众态度 首次结合自然语言处理和深度学习技术对英美两国大规模社交媒体数据开展疫苗态度的纵向和地理空间分析 仅分析特定时间段(2020年3-11月)的社交媒体数据,可能无法反映态度变化的全貌 通过人工智能方法分析社交媒体数据以了解公众对COVID-19疫苗的态度和担忧 英国和美国的社交媒体用户发布的疫苗相关内容 自然语言处理 COVID-19 自然语言处理, 深度学习 深度学习模型 文本数据 英国23,571条Facebook帖子和40,268条推文,美国144,864条Facebook帖子和98,385条推文 NA NA 情感分析准确率, 与全国调查结果的相关性 NA
15486 2025-03-11
Re: An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening
2020-01-01, Journal of the National Cancer Institute
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
15487 2025-10-07
An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening
2019-09-01, Journal of the National Cancer Institute
研究论文 本研究开发了一种基于深度学习的自动视觉评估算法,用于识别宫颈癌前病变和癌症 首次开发出能够自动识别宫颈癌前病变/癌症的深度学习视觉评估算法,在准确度上显著优于传统方法 研究基于历史存档的宫颈图像数据,需要进一步验证在当代数字相机图像上的适用性 开发自动化的宫颈癌筛查方法以改善资源匮乏地区的宫颈癌筛查 哥斯达黎加瓜纳卡斯特地区9406名18-94岁女性的宫颈图像数据 计算机视觉 宫颈癌 宫颈摄影术 深度学习 图像 9406名女性,随访7年(1993-2000) NA NA AUC, 敏感性, 特异性 NA
15488 2025-03-10
Forecasting the eddying ocean with a deep neural network
2025-Mar-06, Nature communications IF:14.7Q1
研究论文 本文开发了一个名为WenHai的数据驱动全球海洋预报系统,通过训练深度神经网络来预测海洋中尺度涡旋的短期演变 首次将深度神经网络应用于全球海洋预报系统,并结合动量、热量和淡水通量的体公式来改进海气相互作用的表示 由于大气和海洋的动态特性不同,AI方法在海洋预报中的应用仍具有挑战性 提高全球海洋预报能力,特别是中尺度涡旋的短期演变预测 海洋中尺度涡旋 机器学习 NA 深度神经网络 DNN 海洋数据 NA NA NA NA NA
15489 2025-03-10
Classifying microfossil radiolarians on fractal pre-trained vision transformers
2025-Mar-06, Scientific reports IF:3.8Q1
研究论文 本文探讨了使用预训练的视觉变换器(ViT)和公式驱动的监督学习(FDSL)技术对微化石(放射虫)进行分类的效果 首次将视觉变换器(ViT)和公式驱动的监督学习(FDSL)应用于地质学中的微化石分类,相比传统CNN模型,平均精度提高了6-8% 未提及具体样本量和数据集的多样性,可能影响模型的泛化能力 探索新的深度学习技术在地质学图像分类中的应用 微化石(放射虫) 计算机视觉 NA 公式驱动的监督学习(FDSL) 视觉变换器(ViT) 图像 NA NA NA NA NA
15490 2025-03-10
Deep learning-based image analysis in muscle histopathology using photo-realistic synthetic data
2025-Mar-06, Communications medicine IF:5.4Q1
研究论文 本文介绍了一种名为SYNTA的新方法,用于生成逼真的合成生物医学图像数据,以解决当前生成模型和基于深度学习的图像分析中的挑战 SYNTA方法采用完全参数化的方法创建针对特定生物医学任务的逼真合成训练数据集,解决了现有生成模型缺乏代表性和高质量真实数据的问题 需要进一步验证SYNTA方法在其他生物医学领域的适用性和效果 旨在通过生成逼真的合成生物医学图像数据,改进和加速生物医学图像分析 肌肉组织病理学和骨骼肌分析 数字病理学 NA 深度学习和生成模型 GAN, Diffusion Models 图像 两个真实世界的数据集 NA NA NA NA
15491 2025-03-10
Frequency transfer and inverse design for metasurface under multi-physics coupling by Euler latent dynamic and data-analytical regularizations
2025-Mar-06, Nature communications IF:14.7Q1
研究论文 本文提出了一种多物理深度学习框架(MDLF),用于解决频率转移和多物理耦合问题,并在超表面设计中实现了未见频率段的预测 提出了结合多保真度DeepONet、欧拉潜在动态网络和数据解析反演网络的MDLF框架,能够在缺乏多物理响应知识的情况下,通过动态利用欧拉潜在空间和单物理信息,实现对未见频率段的预测 需要进一步验证在更广泛的多物理耦合场景下的适用性 解决频率转移问题,并实现超表面在未见频率段的多物理耦合预测 超表面 机器学习 NA 多物理深度学习框架(MDLF) DeepONet, 欧拉潜在动态网络, 数据解析反演网络 频谱数据 NA NA NA NA NA
15492 2025-03-10
CUGUV: A Benchmark Dataset for Promoting Large-Scale Urban Village Mapping with Deep Learning Models
2025-Mar-06, Scientific data IF:5.8Q1
研究论文 本文介绍了CUGUV基准数据集,旨在通过深度学习模型促进大规模城中村(UV)的映射 提出了一个包含来自中国15个主要城市的数千个UV样本的基准数据集,并开发了一个创新的框架,有效整合和学习了多种数据源,以更好地解决跨城市UV映射任务 数据集主要集中在中国的城市,可能限制了其全球适用性 提高大规模城中村映射的准确性和模型的可转移性 城中村(UV) 计算机视觉 NA 深度学习 NA 卫星图像 数千个UV样本,来自中国15个主要城市 NA NA NA NA
15493 2025-03-10
Systematic review and meta-analysis of artificial intelligence in classifying HER2 status in breast cancer immunohistochemistry
2025-Mar-06, NPJ digital medicine IF:12.4Q1
meta-analysis 本文通过诊断性meta分析评估了人工智能在分类HER2免疫组化评分中的表现,展示了其在预测T-DXd资格方面的高准确性 首次系统评估了人工智能在HER2免疫组化评分分类中的表现,并揭示了深度学习和基于补丁的分析方法在提高准确性方面的优势 在外部验证和使用商业化算法的研究中,AI的表现有所下降 评估人工智能在分类HER2免疫组化评分中的准确性和潜力 乳腺癌患者的HER2免疫组化评分 digital pathology breast cancer 免疫组化(IHC) 深度学习 图像 NA NA NA NA NA
15494 2025-03-10
Deep learning-driven ultrasound equipment quality assessment with ATS-539 phantom data
2025-Jan, International journal of medical informatics IF:3.7Q2
研究论文 本研究提出了一种基于深度学习的双阶段框架,用于客观评估超声图像质量,使用ATS-539体模数据 引入双阶段深度学习框架,结合逻辑回归模型,实现超声图像质量的定量和客观评估 依赖于体模数据,可能无法完全反映真实临床环境中的图像质量 开发一种客观评估超声图像质量的方法,以提高诊断准确性 超声图像质量 计算机视觉 NA 深度学习 分类模型、逻辑回归模型 图像 ATS-539体模数据 NA NA NA NA
15495 2025-03-10
Explainability of three-dimensional convolutional neural networks for functional magnetic resonance imaging of Alzheimer's disease classification based on gradient-weighted class activation mapping
2024, PloS one IF:2.9Q1
研究论文 本文通过应用梯度加权类激活映射(Grad-CAM)等方法,提高了基于fMRI的3D-VGG16网络在阿尔茨海默病(AD)诊断中的可解释性 本文的创新点在于使用多种静息态功能活动图(如ALFF、fALFF、ReHo和VMHC)来降低fMRI数据的复杂性,并采用3D-VGG16网络进行AD分类,同时通过GAP层缓解过拟合问题 本文的局限性在于手动特征提取方法可能增加模型负担,且仅针对AD和正常对照组进行了研究,未涉及其他神经系统疾病 研究目的是探索模型在预测时主要关注的大脑感兴趣区域(ROI),以及AD患者和正常对照组之间这些ROI的差异 研究对象为阿尔茨海默病患者和正常对照组 数字病理学 阿尔茨海默病 fMRI 3D-VGG16 图像 未提及具体样本数量 NA NA NA NA
15496 2025-03-10
Computed Tomography-Based Deep Learning Nomogram Can Accurately Predict Lymph Node Metastasis in Gastric Cancer
2023-04, Digestive diseases and sciences IF:2.5Q2
研究论文 本文评估并验证了基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 结合深度学习特征和临床预测因子建立了一个nomogram,显著提高了淋巴结转移预测的准确性 研究为回顾性研究,样本量相对较小,可能影响模型的泛化能力 评估和验证基于计算机断层扫描的深度学习在胃癌患者术前淋巴结转移评估中的预测性能 胃癌患者 计算机视觉 胃癌 计算机断层扫描(CT) ResNet50, 随机森林(RF) 图像 347名患者(训练队列:242,测试队列:105) NA NA NA NA
15497 2025-03-10
Deep Learning Identifies Cardiomyocyte Nuclei With High Precision
2020-08-14, Circulation research IF:16.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
15498 2025-10-07
GTIGNet: Global Topology Interaction Graphormer Network for 3D hand pose estimation
2025-May, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 提出了一种用于3D手部姿态估计的全局拓扑交互图变换器网络GTIGNet 引入上下文感知注意力块(CAAB)增强多尺度特征提取,并提出高阶图变换器显式和隐式建模手部关节拓扑结构 NA 改进单目RGB图像中的3D手部姿态估计 手部关节 计算机视觉 NA 深度学习 图变换器,CNN RGB图像 四个数据集:RHD、STB、FPHA、FreiHAND NA GTIGNet, Context-Aware Attention Block, High-Order Graphormer MPJPE NA
15499 2025-10-07
GARNN: An interpretable graph attentive recurrent neural network for predicting blood glucose levels via multivariate time series
2025-May, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 提出一种可解释的图注意力循环神经网络GARNN,用于通过多元时间序列预测血糖水平 通过图注意力机制直接解释变量贡献,无需后验分析,提供高质量的时序可解释性 NA 开发可解释的深度学习模型以准确预测血糖水平,改善糖尿病管理 1型或2型糖尿病患者的血糖水平 机器学习 糖尿病 多元时间序列分析 图注意力循环神经网络(GARNN) 多元时间序列数据(传感器数据和自我报告事件数据) 四个数据集,代表不同临床场景 NA 图注意力循环神经网络 预测准确率,时序可解释性 NA
15500 2025-03-09
Self-Supervised High-Order Information Bottleneck Learning of Spiking Neural Network for Robust Event-Based Optical Flow Estimation
2025-Apr, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
研究论文 本文提出了一种基于脉冲神经网络(SNN)的自监督高阶信息瓶颈学习算法SeLHIB,用于在噪声环境下鲁棒地估计基于事件的光流 首次提出了基于SNN的自监督信息瓶颈学习策略,并开发了非线性和高阶信息瓶颈学习算法,以增强相关信息的提取和消除冗余 现有SNN架构在训练过程中存在泛化能力和鲁棒性不足的问题,特别是在噪声场景中 提高基于事件的光流估计的泛化能力和鲁棒性,特别是在噪声环境下 基于事件的光流估计 计算机视觉 NA 自监督学习算法 SNN(脉冲神经网络) 事件相机输入 NA NA NA NA NA
回到顶部