深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26637 篇文献,本页显示第 15481 - 15500 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
15481 2024-11-02
Combining graph deep learning and London dispersion interatomic potentials: A case study on pnictogen chalcohalides
2024-Nov-07, The Journal of chemical physics IF:3.1Q1
研究论文 本文研究了将图深度学习与伦敦色散原子间势结合用于描述层状氮化物硫化物的方法 本文创新性地将图深度学习势与半经验色散模型结合,以解决现有模型中长程色散相互作用缺失的问题 尽管结合模型在描述层状化合物方面有所改进,但并非普遍适用,且未进行详细的参数微调 研究如何通过结合图深度学习与色散模型来改进原子间势模型,以更准确地描述层状化合物的物理性质 层状氮化物硫化物 BiTeBr 和 BiTeI,以及一系列具有不同化学计量比的 V-VI-VII 化合物 机器学习 NA 图神经网络 图深度学习模型 晶体结构 包括 BiTeBr 和 BiTeI 在内的多种 V-VI-VII 化合物
15482 2024-11-02
Deep learning-based detection of lumbar spinal canal stenosis using convolutional neural networks
2024-Nov, The spine journal : official journal of the North American Spine Society
研究论文 本文开发了一种基于卷积神经网络的算法,用于从普通放射影像中检测腰椎管狭窄症 利用卷积神经网络进行腰椎管狭窄症的自动检测,使得没有MRI设备的医疗机构或非专科医生也能进行诊断 研究样本仅来自单一机构,且外部验证样本较少 开发一种算法,用于从普通放射影像中诊断是否存在需要手术的腰椎管狭窄症 腰椎管狭窄症患者 计算机视觉 脊柱疾病 卷积神经网络 CNN 图像 150名接受手术的患者,以及25名在其他医院接受手术的患者
15483 2024-11-02
Improved vascular depiction and image quality through deep learning reconstruction of CT hepatic arteriography during transcatheter arterial chemoembolization
2024-Nov, Japanese journal of radiology IF:2.9Q2
研究论文 评估深度学习重建(DLR)对经导管动脉化疗栓塞(TACE)期间计算机断层扫描肝动脉造影(CTHA)图像的血管描绘、肿瘤强化和图像质量的影响 深度学习重建显著提高了小肝动脉的信噪比(SNR)、肿瘤的对比噪声比(CNR)和供血动脉的可视化 文章未提及具体的局限性 评估深度学习重建对CTHA图像质量的影响 CTHA图像的血管描绘、肿瘤强化和图像质量 计算机视觉 NA 深度学习重建 NA 图像 27名患者(18名男性和9名女性,平均年龄75.7岁)
15484 2024-11-02
Forecasting the incidence frequencies of schizophrenia using deep learning
2024-Nov, Asian journal of psychiatry IF:3.8Q1
研究论文 本研究开发了一种基于长短期记忆(LSTM)循环神经网络模型,用于预测台湾住院患者的思觉失调症发病率 本研究首次将LSTM模型应用于思觉失调症发病率的预测,并展示了其在多种模型中的最佳预测性能 研究数据仅限于台湾的住院患者,可能限制了模型的普适性 旨在开发和验证一种高效准确的模型,用于预测思觉失调症的发病率,以支持精神健康策略的制定 台湾住院患者的思觉失调症发病率 机器学习 精神疾病 长短期记忆(LSTM)循环神经网络 LSTM 文本 1998年至2015年间,年龄超过20岁且被诊断为思觉失调症的个体数据
15485 2024-11-02
DentAge: Deep learning for automated age prediction using panoramic dental X-ray images
2024-Nov, Journal of forensic sciences IF:1.5Q2
研究论文 本研究开发并验证了一种基于全景牙科X光图像的自动化年龄预测深度学习模型DentAge DentAge在不同年龄组和牙科条件下表现出色,展示了其在实际场景中的潜在应用价值 模型在预测高龄组(90-100岁)时误差较大,主要受假体修复、牙齿缺失和骨质吸收等因素影响 开发和验证一种基于全景牙科X光图像的自动化年龄预测模型 全景牙科X光图像 计算机视觉 NA 深度学习 深度学习模型 图像 21,007张全景牙科X光图像,年龄范围为4至97岁
15486 2024-11-02
GraphPI: Efficient Protein Inference with Graph Neural Networks
2024-Nov-01, Journal of proteome research IF:3.8Q1
研究论文 本文介绍了一种名为GraphPI的新框架,利用图神经网络进行蛋白质推断 将蛋白质推断问题视为节点分类问题,并利用图神经网络架构来解析蛋白质之间的相互关系 NA 解决蛋白质推断中数据标签稀缺的问题,并提高计算效率 蛋白质推断 机器学习 NA 图神经网络 图神经网络 蛋白质数据集 未明确说明具体样本数量
15487 2024-11-02
Diagnostic evaluation of blunt chest trauma by imaging-based application of artificial intelligence
2024-Nov, The American journal of emergency medicine
综述 本文综述了人工智能在钝性胸部创伤诊断中的应用及其面临的挑战 本文探讨了人工智能在钝性胸部创伤诊断中的潜在应用,并指出了当前研究的局限性 当前深度学习研究主要集中在特定的临床情境,限制了其在解决钝性胸部创伤复杂性方面的实用性 优化人工智能在钝性胸部创伤诊断评估中的作用,以提高患者护理和临床结果 钝性胸部创伤的诊断和评估 计算机视觉 胸部创伤 深度学习 NA 影像 NA
15488 2024-11-02
Automatic plant phenotyping analysis of Melon (Cucumis melo L.) germplasm resources using deep learning methods and computer vision
2024-Oct-30, Plant methods IF:4.7Q1
研究论文 本文利用深度学习和计算机视觉技术对甜瓜种质资源进行自动表型分析 本文构建了一个深度学习算法框架,结合多种模型(DANet、RTMDet、RTMPose、MobileSAM),实现了甜瓜果实和果梗的高效准确分割,并设计了一系列特征提取算法,成功获取了11个甜瓜表型特征 NA 加速甜瓜育种过程,提高其市场竞争力 甜瓜种质资源的外观表型分析 计算机视觉 NA 深度学习 DANet、RTMDet、RTMPose、MobileSAM 图像 117个甜瓜品种,来自两个年度
15489 2024-11-02
Deep learning-based segmentation of kidneys and renal cysts on T2-weighted MRI from patients with autosomal dominant polycystic kidney disease
2024-Oct-30, European radiology experimental IF:3.7Q1
研究论文 本文开发并测试了一种基于深度学习的算法,用于自动分割常染色体显性多囊肾病患者的肾脏和肾囊肿 本文首次使用深度学习算法自动分割肾脏和肾囊肿,并展示了其在评估总肾体积和囊肿指数方面的潜力 算法在处理非常大的肾体积和囊肿时存在低估问题,这可能是由于训练数据集中此类样本不足 开发和测试一种自动分割肾脏和肾囊肿的深度学习算法,以评估其在常染色体显性多囊肾病患者中的应用 常染色体显性多囊肾病患者的肾脏和肾囊肿 计算机视觉 肾病 深度学习 NA 图像 164名常染色体显性多囊肾病患者
15490 2024-11-02
Ancient Yi Script Handwriting Sample Repository
2024-Oct-30, Scientific data IF:5.8Q1
研究论文 本文收集了2922个常用古彝文字的手写单字样本,并完成了连续手写文本采样,测试了不同深度学习网络模型下的识别性能 提出了古彝文字的自动采样方法,并完成了手写样本的自动切割和标注 NA 研究古彝文字的手写识别和生成 古彝文字的手写样本 自然语言处理 NA 深度学习 深度学习网络模型 文本 2922个手写单字样本,427,939个有效字符,250人参与连续手写文本采样
15491 2024-11-02
Image tampering detection based on RDS-YOLOv5 feature enhancement transformation
2024-Oct-30, Scientific reports IF:3.8Q1
研究论文 提出了一种基于RDS-YOLOv5特征增强变换的图像篡改检测方法 引入了多通道特征增强融合算法和改进的RDS-YOLOv5深度学习模型,并引入了非线性损失度量来优化模型训练过程 NA 提高图像篡改检测技术的泛化能力和实际性能 图像篡改检测 计算机视觉 NA 深度学习 RDS-YOLOv5 图像 6187张包含拼接、移除和复制移动三种篡改形式的图像
15492 2024-11-02
Sign language recognition using modified deep learning network and hybrid optimization: a hybrid optimizer (HO) based optimized CNNSa-LSTM approach
2024-Oct-30, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于混合优化器的优化CNNSa-LSTM网络,用于手语识别 本文提出了一种新的深度学习模型CNNSa-LSTM,结合了卷积神经网络、自注意力和长短期记忆网络,用于手语识别。此外,还提出了一种基于河马优化算法和路径查找算法的混合优化器 NA 改进聋人与公众之间的实时交流 手语识别模型 计算机视觉 NA 深度学习 CNNSa-LSTM 图像 NA
15493 2024-11-02
Lightweight and efficient deep learning models for fruit detection in orchards
2024-10-30, Scientific reports IF:3.8Q1
研究论文 本文研究了果园环境中苹果的准确识别,构建了一个包含不同场景的水果数据集,并提出了一种实时轻量级检测网络ELD 提出了EGSS模块和MCAttention模块,用于解决特征提取和分类问题,并采用了注意力机制构建新的特征提取网络,增强了模型的抗干扰能力 NA 研究密集目标、遮挡和自然环境对实际应用场景的影响 果园中的苹果识别 计算机视觉 NA 深度学习 CNN 图像 包含不同场景的水果数据集
15494 2024-11-02
BASE: a web service for providing compound-protein binding affinity prediction datasets with reduced similarity bias
2024-Oct-30, BMC bioinformatics IF:2.9Q1
研究论文 本文介绍了一个名为BASE的网络服务,用于提供减少相似性偏差的化合物-蛋白质结合亲和力预测数据集 提出了BASE网络服务,通过减少蛋白质相似性来降低数据集偏差,从而提高预测模型的泛化能力和鲁棒性 NA 研究化合物-蛋白质结合亲和力预测中的数据集偏差,并提出解决方案 化合物-蛋白质结合亲和力预测数据集的偏差 机器学习 NA 多层感知器模型 多层感知器 化合物和蛋白质特征数据 分析了八个结合亲和力数据库
15495 2024-11-02
Size-Resolved Shape Evolution in Inorganic Nanocrystals Captured via High-Throughput Deep Learning-Driven Statistical Characterization
2024-Oct-29, ACS nano IF:15.8Q1
研究论文 本研究通过深度学习辅助的统计分析,揭示了CoO纳米晶体在亚纳米尺度上的复杂形状演变和生长机制 本研究首次通过高吞吐量统计分析,揭示了纳米晶体尺寸依赖的形状演变,并引入了“起始半径”概念,描述了这些过渡发生的临界尺寸阈值 NA 揭示纳米晶体合成中的尺寸依赖形状演变及其生长机制 CoO纳米晶体 NA NA 高分辨率电子显微镜成像 深度学习 图像 441,067个纳米晶体
15496 2024-11-02
Fusing convolutional learning and attention-based Bi-LSTM networks for early Alzheimer's diagnosis from EEG signals towards IoMT
2024-10-29, Scientific reports IF:3.8Q1
研究论文 本文提出了一种融合卷积学习和基于注意力的双向长短期记忆网络模型,用于从脑电信号中早期诊断阿尔茨海默病,并探讨其在医疗物联网中的应用 本文的创新点在于提出了CL-ATBiLSTM模型,结合卷积层、注意力机制和双向长短期记忆网络,能够更全面地分析脑电信号,区分阿尔茨海默病、轻度认知障碍和健康对照组 NA 本文的研究目的是探索脑电信号在阿尔茨海默病早期诊断中的潜力,并提出一种新的深度学习模型来提高诊断准确性 本文的研究对象是阿尔茨海默病、轻度认知障碍和健康对照组的脑电信号 机器学习 阿尔茨海默病 离散小波变换 卷积神经网络、双向长短期记忆网络 脑电信号 Figshare数据集中包含阿尔茨海默病、轻度认知障碍和健康对照组的样本
15497 2024-11-02
Exploiting common patterns in diverse cancer types via multi-task learning
2024-Oct-29, NPJ precision oncology IF:6.8Q1
研究论文 本研究利用深度学习和多任务学习方法,从高维医学数据中提取特征向量,探索不同癌症类型间的共享模式,以提高癌症预后预测的准确性 本研究首次将多任务学习应用于跨癌症类型的预后预测,通过整合RNA测序和临床数据,显著提高了预测性能 本研究仅使用了三个癌症数据集,且外部验证数据集较少,未来需要更多数据集验证其泛化能力 提高癌症预后预测的准确性,探索不同癌症类型间的共享机制 乳腺癌、肺癌和结肠癌的RNA测序和临床数据 机器学习 癌症 RNA测序 多任务双模态神经网络 文本 三个癌症数据集:乳腺癌、肺癌和结肠癌,外部验证数据集为小细胞肺癌
15498 2024-11-02
Novel cost-effective method for forecasting COVID-19 and hospital occupancy using deep learning
2024-10-29, Scientific reports IF:3.8Q1
研究论文 研究开发了一种基于深度学习的成本效益高的方法,用于预测COVID-19病例和医院占用情况 使用了一种结合双向LSTM层的LSTM模型,并采用了基于未来时间窗口的新预处理方法 研究数据仅来自西班牙大加那利岛的Hospital Insular 开发一种能够准确预测疫情发展和医院占用情况的预测系统 COVID-19病例和医院占用情况 机器学习 COVID-19 深度学习 LSTM 时间序列数据 从2020年到2022年3月29日的COVID-19病例数据,共涉及Hospital Insular的数据
15499 2024-11-02
Integrating genomic and molecular data to predict antimicrobial minimum inhibitory concentration in Klebsiella pneumoniae
2024-10-29, Scientific reports IF:3.8Q1
研究论文 本文介绍了一种结合基因组和分子数据预测肺炎克雷伯菌对抗生素最小抑菌浓度的深度学习方法 本文提出了两种深度学习模型,分别是基于卷积神经网络(CNN)和Enformer的模型,这些模型在准确性上超过了现有的最先进模型,并且Enformer模型简化了数据处理流程 Enformer模型在性能上尚未达到CNN模型的水平 开发一种能够准确预测肺炎克雷伯菌对抗生素最小抑菌浓度的方法,以辅助临床医生在经验治疗阶段的决策 肺炎克雷伯菌及其对抗生素的最小抑菌浓度 机器学习 NA 深度学习 卷积神经网络(CNN)和Enformer 基因组数据和分子结构数据 20种抗生素的数据
15500 2024-11-02
Predicting clinical events characterizing the progression of amyotrophic lateral sclerosis via machine learning approaches using routine visits data: a feasibility study
2024-Oct-29, BMC medical informatics and decision making IF:3.3Q2
研究论文 本研究探讨了使用常规就诊数据通过机器学习方法预测肌萎缩侧索硬化症(ALS)进展相关临床事件的可行性 本研究首次尝试使用常规就诊数据通过机器学习方法预测ALS的进展,并评估了不同模型的预测性能 预测死亡以外的临床事件(如PEG或NIV)的准确性较低,表明现有数据可能不足以支持这些复杂预测任务 测试使用常规就诊数据通过人工智能技术预测ALS进展相关临床事件的可行性 肌萎缩侧索硬化症(ALS)患者的临床事件,包括死亡、PEG和NIV 机器学习 神经退行性疾病 机器学习 逻辑回归(LR)和多层感知器(MLP) 常规就诊数据 NA
回到顶部