深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32373 篇文献,本页显示第 15621 - 15640 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
15621 2025-03-06
Lazy Resampling: Fast and information preserving preprocessing for deep learning
2024-Dec, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文介绍了一种名为Lazy Resampling的软件,旨在优化深度学习中的预处理步骤,减少信息损失并简化流程设计 Lazy Resampling通过将空间预处理操作重新表述为图形管道,减少了管道执行时间和信号退化,使裁剪等操作变为非破坏性 尽管Lazy Resampling在减少信息损失和简化流程设计方面表现出色,但其在医学影像等领域的广泛应用仍需进一步验证 优化深度学习中的预处理步骤,减少信息损失并简化流程设计 医学影像数据 计算机视觉 NA 深度学习 UNet 图像 Medical Segmentation Decathlon数据集 NA NA NA NA
15622 2025-03-06
Fully Automated Region-Specific Human-Perceptive-Equivalent Image Quality Assessment: Application to 18 F-FDG PET Scans
2024-Dec-01, Clinical nuclear medicine IF:9.6Q1
研究论文 本文提出了一种全自动框架,用于对全身18 F-FDG PET扫描进行区域图像质量评估(IQA) 该框架能够在日常临床图像采集过程中即时识别低质量扫描,并在人工智能驱动的18 F-FDG PET分析模型开发中通过拒绝低质量图像和带有伪影的图像来构建干净的数据集 研究样本量相对较小,且未对不同模型之间的性能差异进行深入分析 开发一种全自动且与人类感知等效的模型,用于对18 F-FDG PET图像进行区域图像质量评估 87名患者的174张18 F-FDG PET图像 数字病理学 NA 深度学习(DL)和放射组学机器学习(radiomics-ML) 深度学习模型和机器学习模型 图像 87名患者的174张18 F-FDG PET图像 NA NA NA NA
15623 2025-03-06
Lightweight Transformer exhibits comparable performance to LLMs for Seizure Prediction: A case for light-weight models for EEG data
2024-Dec, Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data
研究论文 本文提出了一种轻量级Transformer架构,用于实时EEG数据的癫痫发作预测,并与多种深度学习模型进行了性能比较 提出了一种轻量级Transformer架构,具有更小的模型尺寸和更低的计算负载,能够在实时推理中表现优异 EEG传感器数据质量的可变性、不同癫痫和发作特征、缺乏标注数据集和ML-ready基准 开发一种能够在有限硬件计算能力下实时推理的轻量级模型,用于癫痫发作预测 癫痫患者的EEG数据 机器学习 癫痫 深度学习 Transformer, ResNet, ViT, LLM EEG数据 MLSPred-Bench数据集,包含12个基准测试 NA NA NA NA
15624 2025-03-06
Sensorless End-to-End Freehand 3-D Ultrasound Reconstruction With Physics-Guided Deep Learning
2024-Nov, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
研究论文 本文提出了一种无需传感器的自由手3D超声重建方法,利用物理引导的深度学习技术 设计了一种新颖的物理启发深度学习网络(PLPPI),无需3D卷积即可进行自由手3D超声重建,显著提高了重建质量并减少了计算资源需求 未提及具体局限性 改进自由手3D超声重建的质量,并减少训练和推理所需的计算资源 自由手3D超声成像 计算机视觉 NA 深度学习 物理引导的深度学习网络(PLPPI) 超声图像 未提及具体样本数量 NA NA NA NA
15625 2025-03-06
PTransIPs: Identification of Phosphorylation Sites Enhanced by Protein PLM Embeddings
2024-06, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本研究开发了一个名为PTransIPs的深度学习框架,用于识别磷酸化位点,该框架在独立测试中表现优于现有最先进方法 PTransIPs首次将蛋白质预训练语言模型(PLM)嵌入应用于此任务,结合了Transformer架构和卷积神经网络,并采用了TIM损失函数进行优化 NA 开发一个深度学习框架以准确识别磷酸化位点,从而揭示细胞内的分子机制和病毒感染过程中的关键点 磷酸化位点 生物信息学 NA 深度学习 Transformer, CNN 蛋白质序列和结构数据 NA NA NA NA NA
15626 2025-03-06
Preliminary Results: Comparison of Convolutional Neural Network Architectures as an Auxiliary Clinical Tool Applied to Screening Mammography in Mexican Women
2024-Jun, Journal of medical and biological engineering IF:1.6Q4
研究论文 本研究开发了一种新型卷积神经网络(CNN)用于乳腺X光片的良恶性分类,并与使用迁移学习的预训练CNN模型进行比较 开发了一种新型CNN模型,并在墨西哥女性乳腺X光片数据集上进行了训练和验证,填补了该领域的数据和工具空白 研究样本量相对较小,且仅使用了两个数据库的数据 开发并验证一种新型CNN模型,用于乳腺X光片的良恶性分类 乳腺X光片 计算机视觉 乳腺癌 卷积神经网络(CNN) CNN, DenseNet121, MobileNetV2, ResNet50, VGG16 图像 1,070张乳腺X光片(来自235名墨西哥患者)和MIAS数据库中的乳腺X光片 NA NA NA NA
15627 2025-03-06
From Basic to Extra Features: Hypergraph Transformer Pretrain-then-Finetuning for Balanced Clinical Predictions on EHR
2024-Jun, Proceedings of machine learning research
PMID:40041452
研究论文 本文提出了一种名为HTP-Star的模型,利用超图结构和预训练-微调框架来建模电子健康记录(EHR)数据,并设计了两种技术以增强模型在微调过程中的鲁棒性 HTP-Star模型通过超图结构和预训练-微调框架,实现了对EHR数据的建模,并能够无缝整合额外特征,同时在微调过程中增强了模型的鲁棒性 未明确提及具体限制 研究目的是通过深度学习模型改进对电子健康记录(EHR)数据的处理,以实现更平衡的临床预测 电子健康记录(EHR)数据 机器学习 NA 超图结构、预训练-微调框架 HTP-Star 电子健康记录(EHR)数据 两个真实的EHR数据集 NA NA NA NA
15628 2025-10-07
Automatic segmentation and labelling of wrist bones in four-dimensional computed tomography datasets via deep learning
2024-04, The Journal of hand surgery, European volume
研究论文 本研究开发了一种深度学习模型,用于从四维计算机断层扫描数据中实现腕骨的自动分割和标记 首次将深度学习应用于四维CT数据的腕骨自动分割和标记,为腕韧带损伤诊断提供关键技术支持 NA 开发自动分割和标记腕骨的深度学习模型,以支持腕韧带病变的诊断 腕骨 计算机视觉 腕部疾病 四维计算机断层扫描 深度学习 四维CT图像 NA NA NA NA NA
15629 2025-10-07
Analysis of the pattern recognition algorithm of broadband satellite modulation signal under deformable convolutional neural networks
2020, PloS one IF:2.9Q1
研究论文 本研究基于可变形卷积神经网络构建宽带卫星调制信号模式识别模型,分析不同参数估计对低信噪比条件下信号识别性能的影响 首次将可变形卷积神经网络应用于宽带卫星调制信号识别,在低信噪比和非理想信道条件下实现高精度识别 研究基于Matlab软件仿真的卫星信号,未提及实际环境验证 分析深度学习在低信噪比条件下对卫星调制信号的识别性能 宽带卫星调制信号(BPSK、QPSK、8PSK、16QAM、64QAM、32APSK) 信号处理 NA 星座图特征提取,信号仿真 DCNN 卫星调制信号数据 数据长度4000 Matlab 可变形卷积神经网络 识别准确率,训练时间 NA
15630 2025-10-07
Risk management system and intelligent decision-making for prefabricated building project under deep learning modified teaching-learning-based optimization
2020, PloS one IF:2.9Q1
研究论文 本研究基于改进教学优化算法和深度学习神经网络建立了装配式建筑项目风险管理系统的智能决策模型 提出结合信息熵改进教学优化算法(MTLBO)与BP神经网络的混合预测模型,增强了全局搜索能力且不易陷入局部最优 未明确说明具体测试函数和实际工程验证的样本规模 提高大型装配式建筑项目施工期间风险管理的智能化水平 装配式建筑项目的风险管理与智能决策 机器学习 NA 深度学习神经网络 BP神经网络 工程风险数据 NA MATLAB 多层前馈神经网络 收敛速度, 预测精度, 可靠性预测, 成本预测 NA
15631 2025-10-07
The data dimensionality reduction and bad data detection in the process of smart grid reconstruction through machine learning
2020, PloS one IF:2.9Q1
研究论文 本研究通过机器学习方法检测智能电网重构过程中的虚假数据注入攻击,解决电力系统中数据维度高和异常数据处理的问题 结合孤立森林异常评分算法与局部线性嵌入降维方法构建数据特征提取算法,并首次将CNN-GRU混合网络用于虚假数据注入攻击检测 研究基于标准IEEE节点系统的仿真数据,未在真实电网环境中验证 实现智能电网安全稳定运行,检测虚假数据注入攻击 电力系统数据,特别是虚假数据注入攻击数据 机器学习 NA MatPower工具仿真分析 CNN, GRU 电网仿真数据 IEEE14总线和IEEE118总线节点系统 NA CNN-GRU混合网络 准确率 NA
15632 2025-03-05
IM- LTS: An Integrated Model for Lung Tumor Segmentation using Neural Networks and IoMT
2025-Jun, MethodsX IF:1.6Q2
研究论文 本文提出了一种集成模型IM-LTS,用于使用神经网络和医疗物联网进行肺肿瘤分割 结合了MobileNetV2和U-NET两种架构,并采用迁移学习技术,使用预训练的神经网络作为U-NET模型的编码器进行分割 未提及具体的数据集大小和样本类型,可能影响模型的泛化能力 开发一种高精度的肺肿瘤分割和分类模型,以支持早期疾病诊断 肺肿瘤 数字病理学 肺癌 深度学习,迁移学习 MobileNetV2, U-NET, 支持向量机 CT图像 NA NA NA NA NA
15633 2025-03-05
Deep learning-assisted Raman spectroscopy for automated identification of specific minerals
2025-May-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究开发了一种基于深度学习的卷积注意力网络,用于快速准确识别矿物成分,并引入Grad-Cam++技术以可视化预测的重要区域 相比纯卷积神经网络(CNN),该模型更擅长学习特征峰中的细节,以区分具有相似拉曼光谱的矿物 NA 开发自动化识别矿物成分的深度学习模型,以加速现场地质工作中拉曼光谱数据的处理 矿物成分 机器学习 NA 拉曼光谱 卷积注意力网络 光谱数据 大量已知数据 NA NA NA NA
15634 2025-03-05
AutoFOX: An automated cross-modal 3D fusion framework of coronary X-ray angiography and OCT
2025-Apr, Medical image analysis IF:10.7Q1
研究论文 本文提出了一种自动化的跨模态3D融合框架AutoFOX,用于冠状动脉X射线血管造影(XA)和光学相干断层扫描(OCT)的融合,以改善冠状动脉疾病的诊断和预后 AutoFOX框架首次采用了先进的侧支管腔重建算法,增强了分叉病变的评估,并通过深度学习模型TransCAN实现了3D血管对齐,显著提高了对齐精度 尽管AutoFOX在3D对齐和分叉病变评估方面表现出色,但其在临床应用中的广泛推广仍需进一步的多中心验证和优化 开发一种自动化的3D融合框架,以提高冠状动脉疾病的诊断和预后评估 冠状动脉X射线血管造影(XA)和光学相干断层扫描(OCT)数据 数字病理学 心血管疾病 深度学习 TransCAN 3D图像 多中心数据集 NA NA NA NA
15635 2025-03-05
DDoCT: Morphology preserved dual-domain joint optimization for fast sparse-view low-dose CT imaging
2025-Apr, Medical image analysis IF:10.7Q1
研究论文 本文提出了一种名为DDoCT的双域联合优化低剂量CT成像框架,旨在通过减少管电流和投影数量来降低辐射剂量,同时解决由此引入的噪声和伪影问题 DDoCT框架在投影和图像域中进行联合优化,不仅解决了减少管电流引入的噪声,还特别关注了减少投影数量引起的条纹伪影问题,提升了在快速低剂量CT成像环境中的适用性 NA 开发一种能够在减少辐射剂量的同时,有效降低噪声和伪影的低剂量CT成像方法 低剂量CT成像 计算机视觉 NA CT成像 深度学习 图像 NA NA NA NA NA
15636 2025-03-05
Personalized dental crown design: A point-to-mesh completion network
2025-Apr, Medical image analysis IF:10.7Q1
研究论文 本文介绍了一种端到端的深度学习模型,用于自动生成个性化的牙冠网格 提出了一种结合特征提取器和基于transformer的模型,以及点对网格模块的深度学习模型,用于牙冠设计,显著减少了Chamfer距离和MSE 未提及具体的数据集大小或模型在不同临床环境中的泛化能力 开发一种自动生成个性化牙冠的深度学习模型,以提高牙冠设计的效率和准确性 牙冠设计 计算机视觉 NA 深度学习 transformer, 点对网格模块 点云数据 未提及具体样本数量 NA NA NA NA
15637 2025-03-05
SurgiTrack: Fine-grained multi-class multi-tool tracking in surgical videos
2025-Apr, Medical image analysis IF:10.7Q1
研究论文 本文提出了一种名为SurgiTrack的新型深度学习方法,用于在手术视频中进行精细的多类别多工具跟踪 SurgiTrack利用YOLOv7进行精确的工具检测,并采用注意力机制建模工具的起始方向,作为操作者的代理,以实现工具重新识别 手术视频中未明确捕捉到操作者的信息,工具在遮挡或重新插入体内后的重新识别仍然具有挑战性 提高手术视频中工具跟踪的准确性和灵活性,以支持计算机辅助干预的成功 手术视频中的多类别多工具 计算机视觉 NA 深度学习 YOLOv7, 注意力机制 视频 CholecTrack20数据集 NA NA NA NA
15638 2025-03-05
TractGraphFormer: Anatomically informed hybrid graph CNN-transformer network for interpretable sex and age prediction from diffusion MRI tractography
2025-Apr, Medical image analysis IF:10.7Q1
研究论文 本文介绍了一种名为TractGraphFormer的混合图CNN-Transformer深度学习框架,用于从扩散MRI纤维束成像中预测性别和年龄 TractGraphFormer结合了局部解剖特征和全局特征依赖,通过图CNN模块捕捉白质几何和灰质连接性,并通过Transformer模块增强全局信息学习,同时包含一个注意力模块用于解释预测性白质连接 NA 研究目的是通过扩散MRI纤维束成像预测个体的性别和年龄 研究对象包括儿童(n = 9345)和年轻成年人(n = 1065) 数字病理学 NA 扩散MRI纤维束成像 Graph CNN-Transformer 图像 儿童(n = 9345)和年轻成年人(n = 1065) NA NA NA NA
15639 2025-03-05
Application-driven validation of posteriors in inverse problems
2025-Apr, Medical image analysis IF:10.7Q1
研究论文 本文提出了一个系统框架,用于在逆问题中基于应用需求验证后验方法 首次将目标检测验证中的关键原则应用于后验方法的验证,提出了模式中心验证方法 未提及具体局限性 解决逆问题中多解情况下的后验方法验证问题 后验方法(如条件扩散模型和可逆神经网络) 计算机视觉 NA NA 条件扩散模型、可逆神经网络 图像 NA NA NA NA NA
15640 2025-03-05
DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks
2025-Apr, Medical image analysis IF:10.7Q1
研究论文 本文提出了一种名为DSAM的深度学习框架,用于分析脑网络中的时空动态 DSAM框架通过时间因果卷积网络捕捉时间动态,使用时间注意单元识别重要时间点,自注意单元构建目标特定的连接矩阵,并采用图神经网络的变体捕捉空间动态,用于下游分类 NA 研究目标是开发一种深度学习框架,以更好地理解脑网络中的时空动态 研究对象为人类脑网络,具体使用了Human Connectome Project数据集和Adolescent Brain Cognitive Development数据集 机器学习 NA rs-fMRI 图神经网络 时间序列数据 Human Connectome Project数据集包含1075个样本,Adolescent Brain Cognitive Development数据集包含8520个样本 NA NA NA NA
回到顶部