深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32373 篇文献,本页显示第 15741 - 15760 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
15741 2025-03-05
Letter to the editor: Prospective analysis of STRATAFIX™ symmetric PDS plus suture for fascial closure in spinal surgery: a pilot study
2024-Sep-04, Neurosurgical review IF:2.5Q1
研究论文 本研究评估了STRATAFIX™对称倒刺缝合线在脊柱手术中与传统编织可吸收缝合线的效果比较 首次在脊柱手术中比较STRATAFIX™对称倒刺缝合线与传统缝合线的效果,并探讨AI模型在缝合训练中的应用 样本量小(20例患者),随访时间短(6个月),限制了结果的普遍性 评估STRATAFIX™对称倒刺缝合线在脊柱手术中的效果,并探讨AI在缝合训练中的应用 脊柱手术患者 数字病理 脊柱损伤 缝合技术 Xception深度学习模型 临床数据 20例患者 NA NA NA NA
15742 2025-03-05
Network signatures define consciousness state during focal seizures
2024-Sep, Epilepsia IF:6.6Q1
研究论文 本研究通过脑电图数据分析了局灶性癫痫发作期间的网络状态,揭示了意识丧失的机制 首次全面评估了局灶性癫痫发作期间的网络状态,并发现FIASs的网络变化与深度睡眠相似 样本量相对较小,且仅使用了SEEG和fMRI数据 研究局灶性癫痫发作期间意识丧失的机制 74名患有局灶性癫痫的患者 神经科学 癫痫 立体脑电图(SEEG)、功能磁共振成像(fMRI) 卷积神经网络(CNN) 脑电图数据 74名患者 NA NA NA NA
15743 2024-08-23
A correspondence of evaluation of deep learning algorithms in detecting Moyamoya disease: a systematic review and single-arm meta-analysis
2024-Aug-21, Neurosurgical review IF:2.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
15744 2025-03-05
CANDI: A Web Server for Predicting Molecular Targets and Pathways of Cannabis-Based Therapeutics
2024-Aug-09, Research square
研究论文 本文介绍了一个名为CANDI的Web服务器,用于预测大麻基治疗药物的分子靶点和通路 开发了CANDI服务器,结合深度学习模型DRIFT,预测大麻化合物的分子靶点和相关通路,为大麻基治疗药物的开发提供新工具 未提及具体实验验证结果,预测结果的准确性有待进一步验证 研究大麻化合物的分子靶点和相关通路,以开发靶向有效的大麻基治疗药物 大麻化合物及其分子靶点和通路 机器学习 疼痛、炎症、癌症、骨关节炎 深度学习 基于注意力机制的神经网络 化合物-靶点相互作用数据 NA NA NA NA NA
15745 2025-03-05
Revolutionizing Aneurysm detection: The role of artificial intelligence in reducing rupture rates
2024-Aug-01, Neurosurgical review IF:2.5Q1
研究论文 本文探讨了人工智能在降低未破裂脑动脉瘤破裂率中的作用 利用AI和ML技术提高脑动脉瘤的早期检测和破裂风险预测准确性 未提及具体的研究局限性 研究人工智能在脑动脉瘤检测和破裂风险预测中的应用 脑动脉瘤患者 数字病理学 脑动脉瘤 CT血管造影(CTA) PointNet++ 图像 未提及具体样本数量 NA NA NA NA
15746 2025-03-05
Advancements in prognostic markers and predictive models for intracerebral hemorrhage: from serum biomarkers to artificial intelligence models
2024-Jul-31, Neurosurgical review IF:2.5Q1
研究论文 本文探讨了脑出血(ICH)的预后标志物和预测模型的最新进展,包括血清生物标志物和人工智能模型 本文创新性地结合了血清sestrin2作为预后标志物和深度学习AI模型,用于预测脑出血的早期血肿扩大和长期结果 未明确提及研究的局限性 提高脑出血的预测和管理水平,以改善患者护理和生存率 脑出血患者 机器学习 脑出血 深度学习,机器学习 深度学习模型,随机森林算法 血清数据,CT影像数据 NA NA NA NA NA
15747 2025-10-07
A single-joint multi-task motor imagery EEG signal recognition method based on Empirical Wavelet and Multi-Kernel Extreme Learning Machine
2024-07, Journal of neuroscience methods IF:2.7Q3
研究论文 提出一种基于经验小波分解和多核极限学习机的单关节多任务运动想象脑电信号识别方法 结合经验小波分解和多核极限学习机增强同类脑电信号的时频特征差异,实现单关节多任务运动想象的高精度识别 仅涉及6名参与者的手腕运动想象任务,样本规模较小 开发更精细的脑机接口命令识别方法 手腕伸展、手腕屈曲和手腕外展三种运动想象任务的脑电信号 脑机接口 NA 脑电信号采集 多核极限学习机 脑电信号 6名参与者 NA 经验小波分解, 多核极限学习机 识别准确率 NA
15748 2025-10-07
Deep learning models for atypical serotonergic cells recognition
2024-07, Journal of neuroscience methods IF:2.7Q3
研究论文 开发基于深度学习的模型,用于识别典型和非典型血清素能神经元 首次使用深度学习模型识别具有非典型特征的血清素能神经元,突破了传统方法只能识别典型神经元的限制 模型仅适用于特定记录参数下的实验,需要调整才能适应不同的采集参数 开发能够准确区分典型和非典型血清素能神经元与非血清素能细胞的分类模型 血清素能神经元和非血清素能细胞的电生理记录数据 机器学习 NA 体外电生理记录 CNN 动作电位电生理信号 27,108个原始动作电位样本和1200万个合成动作电位样本 NA 卷积神经网络 准确率 NA
15749 2025-03-05
Evaluation of deep learning algorithms in detecting moyamoya disease: a systematic review and single-arm meta-analysis
2024-Jun-29, Neurosurgical review IF:2.5Q1
系统综述与单臂荟萃分析 本研究评估了深度学习算法在诊断烟雾病(MMD)中的效果,通过分析敏感性、特异性和曲线下面积(AUC)与专家共识进行比较 首次系统评估深度学习算法在烟雾病诊断中的应用,并进行了单臂荟萃分析 仅包括英文文献,排除了使用传统机器学习方法的研究 评估深度学习算法在烟雾病诊断中的效果 烟雾病(MMD)患者 计算机视觉 烟雾病 深度学习 深度学习模型 图像 4,416名患者,其中1,358名患有烟雾病 NA NA NA NA
15750 2025-03-05
Text-to-video generative artificial intelligence: sora in neurosurgery
2024-Jun-13, Neurosurgical review IF:2.5Q1
研究论文 本文探讨了生成式人工智能Sora在神经外科中的应用及其潜力 介绍了Sora这一新型生成式AI工具,结合自然语言处理、深度学习和计算机视觉技术,能够从文本提示生成视频,为神经外科领域带来创新应用 当前模型存在物理上不可能的运动生成、自发生成主题、不自然的物体变形、不准确的物理交互以及生成多个主题时表现异常等问题,同时涉及患者隐私、偏见和伦理问题 探讨生成式AI在神经外科中的应用潜力及其效果评估 神经外科领域 自然语言处理, 计算机视觉 NA 生成式AI, 自然语言处理, 深度学习, 计算机视觉 LLM, 生成式AI 文本, 视频 NA NA NA NA NA
15751 2025-03-05
Breaking new ground: can artificial intelligence and machine learning transform papillary glioneuronal tumor diagnosis?
2024-Jun-07, Neurosurgical review IF:2.5Q1
研究论文 本文探讨了人工智能和机器学习在乳头状胶质神经元肿瘤(PGNT)诊断中的潜在应用 首次提出将AI和ML技术应用于PGNT的诊断,以提高术前诊断的准确性 AI预测需要医学专业人员的验证,不能完全替代临床专业知识 研究AI和ML在PGNT诊断中的应用,以提高诊断准确性和患者治疗效果 乳头状胶质神经元肿瘤(PGNT) 数字病理学 脑肿瘤 深度学习 NA 影像数据 36例确诊的PGNT病例 NA NA NA NA
15752 2025-03-05
Using Wearable Sensors and Machine Learning to Assess Upper Limb Function in Huntington's Disease
2024-Jun-03, Research square
研究论文 本研究利用可穿戴传感器和机器学习技术评估亨廷顿病患者的日常生活中的上肢功能 首次将可穿戴传感器和深度学习模型结合,用于监测亨廷顿病患者的日常上肢功能,并预测疾病组别和临床评分 样本量较小(HD=16,pHD=7,CTR=16),可能影响结果的普遍性 评估亨廷顿病患者的上肢功能,探索可穿戴传感器和机器学习在疾病监测和治疗评估中的应用 亨廷顿病患者(HD)、前驱期亨廷顿病患者(pHD)和健康对照组(CTR) 机器学习 亨廷顿病 深度学习模型 深度学习模型 传感器数据 HD=16,pHD=7,CTR=16 NA NA NA NA
15753 2025-03-05
Discordance between a deep learning model and clinical-grade variant pathogenicity classification in a rare disease cohort
2024-May-23, medRxiv : the preprint server for health sciences
研究论文 本文探讨了深度学习模型AlphaMissense在罕见病队列中与临床级变异致病性分类之间的不一致性 揭示了AlphaMissense在评估内在无序区域(IDRs)中错义变异致病性方面的局限性 AlphaMissense在评估IDRs中错义变异的致病性时表现不佳,导致某些包含IDRs的基因的基因必需性评分不可靠 评估深度学习模型在罕见病队列中预测错义变异致病性的准确性 罕见病队列中的错义变异 生物医学信息学 罕见病 深度学习 AlphaMissense 基因变异数据 NA NA NA NA NA
15754 2025-03-05
Assessment of changes in vessel area during needle manipulation in microvascular anastomosis using a deep learning-based semantic segmentation algorithm: A pilot study
2024-May-09, Neurosurgical review IF:2.5Q1
研究论文 本研究开发了一种基于深度学习的语义分割算法,用于评估微血管吻合术中血管面积的变化,以客观评估手术技能 首次使用手术视频评估手术对象面积变化,提出了一种新的微血管吻合术性能评估方法 研究为初步研究,样本量较小,且仅使用人工血管进行训练 开发一种基于深度学习的算法,用于评估微血管吻合术中血管面积的变化,以客观评估手术技能 微血管吻合术中的血管 计算机视觉 NA 深度学习 ResNet-50 视频 微血管端侧吻合术训练视频 NA NA NA NA
15755 2025-10-07
Abdominal CT metrics in 17,646 patients reveal associations between myopenia, myosteatosis, and medical phenotypes: a phenome-wide association study
2024-May, EBioMedicine IF:9.7Q1
研究论文 本研究通过深度学习自动化分析17,646名患者的腹部CT影像,探索肌肉减少症和肌肉脂肪变性生物标志物与电子健康记录中医学表型的关联 首次将表型全关联研究(PheWAS)方法应用于大规模CT影像生物标志物分析,发现了多个先前未报告的肌肉指标与医学表型之间的关联 研究为观察性设计,无法确定因果关系;样本主要来自北美单一医疗中心 探究腹部CT衍生的骨骼肌指标与电子健康记录中医学表型的关联 17,646名成年患者(平均年龄56±19岁,57.5%为女性)的腹部CT扫描和电子健康记录数据 医学影像分析 肌肉减少症,肌肉脂肪变性 深度学习,CT影像分析,电子健康记录分析 深度学习模型 CT影像,电子健康记录文本数据 17,646名患者 NA NA OR值,95%置信区间,P值 NA
15756 2025-10-07
Volumetric segmentation in the context of posterior fossa-related pathologies: a systematic review
2024-Apr-19, Neurosurgical review IF:2.5Q1
系统综述 对后颅窝相关病理学中容积分割技术的文献进行系统性回顾 系统总结了后颅窝分割技术的演进历程,从手动轮廓勾画到深度学习方法,并比较了不同技术的优缺点 仅纳入了截至2023年11月的文献,可能存在发表偏倚 总结后颅窝分割技术的现状及其在相关病理研究中的应用 后颅窝相关疾病(如Chiari畸形、三叉神经痛、儿童小脑缄默综合征等) 数字病理学 神经系统疾病 医学影像分割 卷积神经网络 医学影像 52篇纳入文献(从2205篇初筛文献中筛选) NA NA NA NA
15757 2025-10-07
The detection of absence seizures using cross-frequency coupling analysis with a deep learning network
2024-Apr-10, Research square
研究论文 提出一种基于交叉频率耦合分析和堆叠稀疏自编码器的深度学习方法,用于自动检测脑电图中的失神发作 首次将交叉频率耦合分析与深度学习方法相结合用于癫痫失神发作的自动检测 样本量较小(仅12名患者),仅使用单一数据库的数据 开发自动检测癫痫失神发作的深度学习方法 癫痫患者的脑电图数据 机器学习 癫痫 脑电图分析 SSAE 脑电图信号 12名患者的94次失神发作记录 NA 堆叠稀疏自编码器 灵敏度, 特异度, 准确率 NA
15758 2025-10-07
Deep learning segmentation of the choroid plexus from structural magnetic resonance imaging (MRI): validation and normative ranges across the adult lifespan
2024-Feb-29, Fluids and barriers of the CNS IF:5.9Q1
研究论文 开发三种深度学习模型从结构MRI中自动分割脉络丛,并验证其性能及提供成人生命周期内的规范范围 首次提出基于常规临床MRI序列的深度学习脉络丛分割方法,并提供跨成人生命周期的规范体积范围 样本量相对有限(初始训练集n=50),需要更多外部验证 改进脉络丛体积量化方法,为神经退行性疾病研究提供工具 健康对照和神经退行性疾病患者的脉络丛结构 医学影像分析 神经退行性疾病 结构磁共振成像(3D T1加权、3D T2加权、2D T2加权FLAIR) 全卷积神经网络 MRI图像 训练集50人(21-85岁),验证集98人(21-89岁) NA 全卷积神经网络 Dice系数, 95% Hausdorff距离, AUC, 组内相关系数 NA
15759 2025-10-07
Prediction of cerebral aneurysm rupture risk by machine learning algorithms: a systematic review and meta-analysis of 18,670 participants
2024-Jan-06, Neurosurgical review IF:2.5Q1
系统综述与Meta分析 通过系统综述和Meta分析评估机器学习算法在预测脑动脉瘤破裂风险中的有效性和准确性 首次对机器学习算法预测脑动脉瘤破裂风险进行大规模系统综述和Meta分析,涉及18,670名参与者 纳入研究数量有限(35项),需要进一步研究提高对颅内动脉瘤破裂状态的诊断性能 评估机器学习算法在预测脑动脉瘤破裂风险中的临床应用价值 经DSA、CTA或MRI确诊的脑动脉瘤患者 机器学习 脑血管疾病 DSA、CTA、MRI CNN, ANN 医学影像数据 18,670名参与者 NA NA 灵敏度, 特异度, 阳性似然比, 阴性似然比, 诊断评分, 比值比 NA
15760 2025-03-05
AS2LS: Adaptive Anatomical Structure-Based Two-Layer Level Set Framework for Medical Image Segmentation
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society IF:10.8Q1
研究论文 本文提出了一种基于自适应解剖结构的两层水平集框架(AS2LS),用于分割具有同心结构的器官,如左心室和眼底 提出了一种新颖的自适应解剖结构的两层水平集表示方法,并结合了两阶段水平集演化算法,提高了复杂医学图像分割的准确性 未提及具体局限性 提高医学图像分割的准确性,特别是针对具有同心结构的器官 医学图像中的器官,如左心室和眼底 计算机视觉 NA 水平集方法 AS2LS(自适应解剖结构的两层水平集框架) 医学图像 未提及具体样本数量 NA NA NA NA
回到顶部