深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 33074 篇文献,本页显示第 15761 - 15780 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
15761 2025-10-07
Ultrasound-Based Deep Learning Radiomics Nomogram for the Assessment of Lymphovascular Invasion in Invasive Breast Cancer: A Multicenter Study
2024-10, Academic radiology IF:3.8Q1
研究论文 基于B超和彩色多普勒超声图像开发深度学习放射组学列线图用于术前评估浸润性乳腺癌淋巴血管侵犯状态 首次结合B超和彩色多普勒超声图像开发深度学习放射组学列线图,通过多中心研究验证其对淋巴血管侵犯的预测价值 回顾性研究设计,样本仅来自八个医院 术前评估浸润性乳腺癌的淋巴血管侵犯状态 832例经病理证实的浸润性乳腺癌患者 数字病理 乳腺癌 B超,彩色多普勒血流成像 深度学习 超声图像 832例患者来自八个医院,分为训练集、内部测试集和外部测试集 NA NA AUC, 准确率, 校准曲线, 决策曲线分析, 临床影响曲线, 净重分类改进, 综合判别改进 NA
15762 2025-10-07
Feasibility of Artificial Intelligence Constrained Compressed SENSE Accelerated 3D Isotropic T1 VISTA Sequence For Vessel Wall MR Imaging: Exploring the Potential of Higher Acceleration Factors Compared to Traditional Compressed SENSE
2024-10, Academic radiology IF:3.8Q1
研究论文 本研究探讨基于深度学习的压缩感知加速3D T1 VISTA序列在血管壁磁共振成像中的可行性,并与传统压缩感知方法进行比较 首次将人工智能约束压缩感知技术应用于血管壁MRI,探索比传统压缩感知更高的加速因子 样本量较小(40例患者),需要更大规模研究验证 优化血管壁磁共振成像的加速因子,获得高质量临床图像 40例颅内或颈动脉粥样硬化斑块患者 医学影像分析 心血管疾病 3D T1加权容积各向同性涡轮自旋回波采集,磁共振成像 深度学习 磁共振图像 40例患者 NA NA 信噪比,对比噪声比,图像质量评分 3.0T MR系统
15763 2025-10-07
Deep Learning Radiomics Model of Contrast-Enhanced CT for Differentiating the Primary Source of Liver Metastases
2024-10, Academic radiology IF:3.8Q1
研究论文 开发并验证基于增强CT的深度学习放射组学模型,用于识别肝转移瘤的原发灶来源 采用深度学习放射组学方法结合分步分类策略,首次实现对五种不同原发灶肝转移瘤的鉴别诊断 样本量相对有限,仅包含五个特定癌种的肝转移病变 开发能够识别肝转移瘤原发灶来源的智能诊断模型 657个肝转移病灶(来自428例患者),包括乳腺癌、肺癌、结直肠癌、胃癌和胰腺癌 医学影像分析 肝转移癌 增强CT成像 深度学习放射组学模型 医学影像(CT图像) 训练验证集545个病灶(7:3分割),外部测试集112个病灶 NA NA 准确率,AUC NA
15764 2025-10-07
A deep learning approach for fast muscle water T2 mapping with subject specific fat T2 calibration from multi-spin-echo acquisitions
2024-04-08, Scientific reports IF:3.8Q1
研究论文 提出一种基于深度学习的快速肌肉水T2映射方法,通过多自旋回波采集实现受试者特异性脂肪T2校准 利用全连接神经网络替代传统的双组分扩展相位图拟合方法,显著提升计算效率 NA 开发快速准确的肌肉水T2映射方法 肌肉组织 医学影像分析 NA 多自旋回波采集,MRI 全连接神经网络 MRI影像数据 NA NA 全连接神经网络 Lin一致性相关系数 最小计算资源
15765 2025-03-22
MaskDGNets: Masked-attention guided dynamic graph aggregation network for event extraction
2024, PloS one IF:2.9Q1
研究论文 本文提出了一种名为MaskDGNets的新框架,用于事件抽取,通过掩码注意力引导的动态图聚合网络来解决传统深度学习方法忽略词特征与序列信息之间关联的问题 提出了掩码注意力机制和动态图聚合模块,有效平衡词向量特征和序列语义,并增强事件与事件之间、事件与主要属性之间的交互性和关联性 未提及具体局限性 提升事件抽取的性能,解决传统方法忽略词特征与序列信息关联的问题 事件抽取任务中的词特征与序列信息 自然语言处理 NA 动态图聚合网络、掩码注意力机制 MaskDGNets 文本 两个基准数据集(DuEE和CCKS2020) NA NA NA NA
15766 2025-10-07
Nuclear morphology is a deep learning biomarker of cellular senescence
2022-08, Nature aging IF:17.0Q1
研究论文 本研究开发了一种基于核形态的深度学习模型,用于预测细胞衰老,并验证其跨组织和物种的适用性 首次证明核形态可作为细胞衰老的深度学习生物标志物,具有跨组织和物种的普适性 研究主要基于体外培养细胞和组织样本,需要进一步在更多临床场景中验证 开发基于核形态的细胞衰老预测方法并探索其与人类健康结局的关联 人类成纤维细胞、小鼠星形胶质细胞、小鼠神经元、早衰成纤维细胞、小鼠肝组织、人类皮肤活检样本 数字病理学 衰老相关疾病 H&E染色 神经网络 图像 多种细胞类型和组织样本 NA NA 准确率 NA
15767 2025-03-20
Sex Differences in Age-Related Changes in Retinal Arteriovenous Area Based on Deep Learning Segmentation Model
2025 May-Jun, Ophthalmology science IF:3.2Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
15768 2025-10-07
Speed and efficiency: evaluating pulmonary nodule detection with AI-enhanced 3D gradient echo imaging
2025-Apr, European radiology IF:4.7Q1
研究论文 评估人工智能辅助压缩感知在加速肺部MR成像中对肺结节检测和表征的诊断可行性 结合并行成像、压缩感知和深度学习图像重建技术,首次在肺部MRI中实现高达15倍的加速因子,同时保持高结节检测率 样本量相对较小(37名患者),仅评估了三种特定加速因子,缺乏与其他加速方法的直接比较 评估AI增强压缩感知技术在肺部MR成像中的诊断性能,特别是肺结节检测和表征能力 良性和恶性肺结节患者 医学影像分析 肺癌 3D梯度回波序列,并行成像,压缩感知,深度学习图像重建 深度学习 医学影像(MRI和CT) 37名患者,64个肺结节(57个实性结节,6个部分实性结节,1个磨玻璃结节) NA NA 图像质量评分(5点Likert量表),结节检测率,结节形态评估,结节大小测量,组内相关系数(ICC) NA
15769 2025-10-07
Generating synthetic high-resolution spinal STIR and T1w images from T2w FSE and low-resolution axial Dixon
2025-Apr, European radiology IF:4.7Q1
研究论文 利用深度学习从T2加权FSE和低分辨率轴向Dixon序列生成合成的高分辨率脊柱STIR和T1加权图像 首次提出使用两个连续应用的3D Pix2Pix深度学习模型,通过结合矢状T2w FSE和轴向T1w-Dixon序列生成合成矢状T1w FSE和STIR图像 回顾性研究,使用的数据集来自特定人群(德国波美拉尼亚健康研究和德国国家队列) 开发从现有MRI序列生成合成脊柱图像的方法,以减少扫描时间并实现回顾性分析 脊柱MRI图像,包括T2w FSE、T1w-Dixon、T1w FSE和STIR序列 医学影像分析 骨髓病变 MRI(快速自旋回波、短时反转恢复、Dixon技术) GAN 医学影像 三个数据集共5299个受试者(SHIP:3142,NAKO:2000,内部数据集:157) NA 3D Pix2Pix PSNR, SSIM, 误分类率, Fleiss kappa NA
15770 2025-10-07
Reducing energy consumption in musculoskeletal MRI using shorter scan protocols, optimized magnet cooling patterns, and deep learning sequences
2025-Apr, European radiology IF:4.7Q1
研究论文 本研究探讨通过优化扫描协议、深度学习加速采集和优化冷却系统来降低肌肉骨骼MRI能耗的策略 首次系统评估三种节能策略(协议优化、深度学习加速、冷却系统优化)在MRI中的综合节能效果 研究仅在德国慕尼黑的两台1.5T MRI扫描仪上进行,样本量有限 优化MRI扫描仪能耗使用,提高能源效率而不影响图像质量 肌肉骨骼MRI扫描 医学影像分析 肌肉骨骼疾病 MRI扫描,深度学习加速采集 深度学习模型 医学影像数据 两台1.5T MRI扫描仪(Aera和Sola) NA NA 能耗降低百分比,时间减少百分比 NA
15771 2025-10-07
Trends in Research of Odontogenic Keratocyst and Ameloblastoma
2025-Apr, Journal of dental research IF:5.7Q1
综述 本文综述了牙源性角化囊肿和成釉细胞瘤研究领域的最新进展与趋势 整合了单细胞组学、空间转录组学、三维培养技术和人工智能在牙源性角化囊肿和成釉细胞瘤研究中的最新应用 牙源性角化囊肿仍缺乏可靠的体外和体内模型 总结牙源性角化囊肿和成釉细胞瘤研究的最新进展和发展趋势 牙源性角化囊肿和成釉细胞瘤 数字病理学 颌骨疾病 单细胞组学, 空间转录组学, 三维培养技术, 人工智能 机器学习, 深度学习 影像数据, 病理数据 NA NA NA 诊断准确率 NA
15772 2025-10-07
Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction
2025-Apr, Magma (New York, N.Y.)
研究论文 提出深度学习初始化压缩感知方法加速容积多轴螺旋投影MRF的重建过程 首次将深度学习生成的种子点用于初始化迭代重建,显著减少收敛所需迭代次数 NA 减少磁共振指纹成像的重建时间,满足临床需求 全脑T1和T2映射 医学影像分析 NA 磁共振指纹成像,多轴螺旋投影采集 深度学习 容积时空MRI数据 NA NA NA 重建质量,处理时间 GPU
15773 2025-10-07
A Systematic Review of Advances in AI-Assisted Analysis of Fundus Fluorescein Angiography (FFA) Images: From Detection to Report Generation
2025-Apr, Ophthalmology and therapy IF:2.6Q2
综述 系统回顾2019-2024年人工智能辅助眼底荧光血管造影图像分析的研究进展 首次系统总结AI在FFA图像分析中从病灶检测到报告生成的全流程应用突破 模型透明度不足,跨人群鲁棒性有待验证,数据隐私和技术基础设施存在挑战 评估AI在FFA图像自动分析中的临床应用价值与发展前景 PubMed、Web of Science和Google Scholar数据库中23篇相关研究文献 计算机视觉 眼底疾病 眼底荧光血管造影 深度学习, 机器学习 FFA图像 23篇研究文献 NA NA 诊断准确性, 工作流程效率 NA
15774 2025-10-07
Mining the UniProtKB/Swiss-Prot database for antimicrobial peptides
2025-Apr, Protein science : a publication of the Protein Society IF:4.5Q1
研究论文 本研究开发了一种从UniProtKB/Swiss-Prot数据库中挖掘新型抗菌肽的工作流程 首次使用深度学习工具AMPlify对公共蛋白质数据库进行大规模计算挖掘以发现新型抗菌肽 仅从真核生物序列中挖掘,且仅测试了部分合成肽的抗菌活性 开发抗菌肽挖掘方法以应对抗生素耐药性问题 UniProtKB/Swiss-Prot数据库中的蛋白质序列 生物信息学 细菌感染 深度学习预测,蛋白质结构预测,肽合成 深度学习模型 蛋白质序列数据 从数据库中发现8008个新型推定抗菌肽,合成测试38个肽 AMPlify NA 抗菌活性测试 NA
15775 2025-10-07
CommRad RF: A dataset of communication radio signals for detection, identification and classification
2025-Apr, Data in brief IF:1.0Q3
研究论文 本文提出了一个包含2700多个无线电信号的创新数据集,并开发了两种轻量级深度学习模型用于无线电信号处理 填补了商用对讲机无线电信号公开数据集的空白,并提出了两种新型轻量级一维卷积神经网络模型 数据采集仅限于室内多路径环境,信号来源仅包含27台无线电设备 增强通信信道安全性,通过无线电指纹识别技术检测未经授权的传输源 商用对讲机和无线电设备的通信信号 信号处理 NA 无线电信号采集 CNN 无线电信号 2700多个无线电信号,来自27台无线电设备 NA Light Weight 1DCNN, Light Weight Bivariate 1DCNN NA NA
15776 2025-10-07
A novel rotation and scale-invariant deep learning framework leveraging conical transformers for precise differentiation between meningioma and solitary fibrous tumor
2025-Apr, Journal of pathology informatics
研究论文 提出一种旋转和尺度不变性的深度学习框架,用于精确区分脑膜瘤和孤立性纤维瘤 采用新型锥形变换器架构,能够捕获全切片图像中的全局和局部成像标记,并适应不同放大倍率的变异 研究样本量相对较小(92例患者),需要更大规模验证 开发AI诊断工具,精确区分脑膜瘤和孤立性纤维瘤 脑膜瘤和孤立性纤维瘤患者 数字病理学 中枢神经系统肿瘤 全切片图像分析 Transformer 图像 92例患者(46例脑膜瘤,46例孤立性纤维瘤) NA 锥形变换器 准确率, 灵敏度, 特异性, F1分数 NA
15777 2025-10-07
Implementation of A New, Mobile Diabetic Retinopathy Screening Model Incorporating Artificial Intelligence in Remote Western Australia
2025-Apr, The Australian journal of rural health
研究论文 本文介绍并评估了在澳大利亚偏远西部地区实施的新型移动糖尿病视网膜病变筛查模式,该模式整合了人工智能技术 开发了结合人工智能的移动糖尿病视网膜病变筛查新模式,在偏远地区实现即时诊断,并将筛查率提高了11倍 样本量相对较小(78名患者),研究仅限于澳大利亚皮尔巴拉地区 评估人工智能辅助的移动糖尿病视网膜病变筛查模式在偏远地区的实施效果和患者接受度 澳大利亚皮尔巴拉地区的糖尿病患者 数字病理 糖尿病视网膜病变 视网膜成像,人工智能诊断 深度学习系统 视网膜图像 78名患者,其中56.4%为原住民或托雷斯海峡岛民 NA NA 筛查人数,患者接受度,可转诊糖尿病视网膜病变比例,不可分级图像比例 集成人工智能诊断的自动化视网膜相机,移动筛查车(梅赛德斯Sprinter Van)
15778 2025-10-07
Deep Learning-Driven Computational Approaches for Studying Intrinsically Disordered Regions in S100-A9
2025-Mar-20, Methods in molecular biology (Clifton, N.J.)
研究论文 本章介绍了一种利用深度学习方法研究S100-A9蛋白内在无序区域的初步方案 将人工智能技术应用于内在无序区域的预测和分析,以S100-A9蛋白为案例研究 仅提供初步水平的研究方案,未涉及具体模型性能验证 开发计算方法来研究蛋白质内在无序区域 S100-A9蛋白的内在无序区域 机器学习 银屑病 深度学习 NA 蛋白质序列数据 NA NA NA NA NA
15779 2025-10-07
Emerging Trends and Innovations in Radiologic Diagnosis of Thoracic Diseases
2025-Mar-20, Investigative radiology IF:7.0Q1
综述 本文总结了胸部影像学领域的关键进展,包括成像技术、计算工具和临床应用方面的突破 整合了人工智能驱动的计算机辅助检测系统、光子计数探测器CT和低场MRI等新型成像技术,展示了定量功能分析与AI工具融合的创新价值 作为综述文章,主要基于已有研究进行总结,未提供原始实验数据验证 总结胸部疾病放射学诊断的新兴趋势和创新技术 胸部疾病包括肺癌、肺结节、间质性肺病、慢性阻塞性肺病、COVID-19肺炎和肺栓塞等 医学影像分析 胸部疾病 光子计数探测器CT、低场MRI、双能CT、暗场放射成像、CT纹理分析、灌注成像 深度学习 CT图像、MRI图像、X射线图像 NA NA NA NA NA
15780 2025-10-07
Artificial intelligence to enhance the diagnosis of ocular surface squamous neoplasia
2025-Mar-20, Scientific reports IF:3.8Q1
研究论文 开发基于人工智能的活体共聚焦显微镜图像分析方法,用于准确诊断眼表鳞状上皮 neoplasia 提出基于方形数据增强策略处理类别不平衡问题,并采用少样本学习模型提高罕见症状识别精度 在多类别分类任务中准确率较低 利用人工智能技术增强眼表鳞状上皮 neoplasia 的诊断能力 眼表鳞状上皮 neoplasia 及其他眼表疾病患者 计算机视觉 眼表鳞状上皮 neoplasia 活体共聚焦显微镜 深度学习 图像 2,774张活体共聚焦显微镜图像 TensorFlow, PyTorch ResNet50V2, Yolov8x, VGG19 准确率, 精确率, 召回率, F1分数 NA
回到顶部