本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']
”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15821 | 2025-02-05 |
Direct estimation of fetal biometry measurements from ultrasound video scans through deep learning
2025-Feb-01, American journal of obstetrics & gynecology MFM
IF:3.8Q1
DOI:10.1016/j.ajogmf.2025.101623
PMID:39900243
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
15822 | 2025-03-02 |
Deep Learning Approach Predicts Longitudinal Retinal Nerve Fiber Layer Thickness Changes
2025-Jan-31, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering12020139
PMID:40001659
|
研究论文 | 本研究旨在开发深度学习模型,预测青光眼患者视网膜神经纤维层(RNFL)厚度的变化,以促进疾病的早期诊断和进展监测 | 使用纵向OCT成像数据,结合自定义1D卷积神经网络(CNN),在不同人口统计学和疾病严重程度下实现一致的预测性能 | 样本量相对较小(251名参与者,437只眼睛),可能限制模型的泛化能力 | 开发深度学习模型以预测青光眼患者RNFL厚度的变化,支持临床决策 | 青光眼患者的视网膜神经纤维层(RNFL)厚度变化 | 数字病理学 | 青光眼 | 光学相干断层扫描(OCT) | 线性回归(LR)、支持向量回归(SVR)、梯度提升回归(GBR)、自定义1D卷积神经网络(CNN) | 图像(OCT扫描) | 251名参与者(437只眼睛) | NA | NA | NA | NA |
15823 | 2025-10-07 |
Deep learning model targeting cancer surrounding tissues for accurate cancer diagnosis based on histopathological images
2025-Jan-23, Journal of translational medicine
IF:6.1Q1
DOI:10.1186/s12967-024-06017-6
PMID:39849586
|
研究论文 | 提出一种针对胃癌组织病理图像中癌周组织的深度学习框架,通过优化非癌区域权重提升癌症诊断准确率 | 首次发现非癌区域权重依赖的模型性能,揭示具有重塑微环境和区域癌化特征的非癌区域对癌症诊断的价值 | 研究仅针对胃癌,未验证其他癌症类型的适用性 | 利用组织病理图像中癌周组织的特征改进癌症诊断准确性 | 胃癌组织病理图像中的癌区和非癌区域 | 数字病理 | 胃癌 | 组织病理成像 | CNN | 图像 | NA | NA | MobileNetV2 | 准确率 | NA |
15824 | 2025-10-07 |
Deep Learning-Enabled Integration of Histology and Transcriptomics for Tissue Spatial Profile Analysis
2025, Research (Washington, D.C.)
DOI:10.34133/research.0568
PMID:39830364
|
研究论文 | 提出一种深度学习框架GIST,整合组织学图像和空间转录组数据用于组织空间特征分析 | 首次利用在数百万组织学图像上预训练的病理学基础模型增强特征提取,并采用混合图变换器模型整合组织学和转录组特征 | 仅在人类肺癌、乳腺癌和结直肠癌数据集上验证,尚未在其他癌症类型或组织中测试 | 开发整合组织学和转录组学的空间细胞特征分析方法 | 人类肺癌、乳腺癌和结直肠癌组织 | 数字病理学 | 肺癌,乳腺癌,结直肠癌 | 空间分辨转录组学,组织染色成像 | 图变换器,基础模型 | 图像,转录组数据 | NA | NA | 混合图变换器 | 空间域识别准确率,微环境分割准确率,基因表达分析准确率 | NA |
15825 | 2025-03-02 |
Paving the way for new antimicrobial peptides through molecular de-extinction
2025, Microbial cell (Graz, Austria)
DOI:10.15698/mic2025.02.841
PMID:40012704
|
研究论文 | 本文探讨了通过分子去灭绝技术研究古代基因组和蛋白质组中的抗菌肽(AMPs),作为传统抗生素的替代品 | 利用分子去灭绝技术挖掘古代基因组和蛋白质组中的抗菌肽,结合软件工具和深度学习模型,发现了多种新型抗菌肽 | NA | 研究古代基因组和蛋白质组中的抗菌肽,以发现新型抗生素并深入了解进化过程 | 古代基因组和蛋白质组中的抗菌肽 | 生物信息学 | NA | 分子去灭绝技术、深度学习 | 深度学习模型 | 基因组数据、蛋白质组数据 | NA | NA | NA | NA | NA |
15826 | 2025-03-02 |
Artificial Intelligence Powered Automated and Early Diagnosis of Acute Lymphoblastic Leukemia Cancer in Histopathological Images: A Robust SqueezeNet-Enhanced Machine Learning Framework
2025, International journal of telemedicine and applications
IF:3.1Q2
DOI:10.1155/ijta/2257215
PMID:40017574
|
研究论文 | 本研究提出了一种基于SqueezeNet增强的机器学习框架,用于自动筛查和分类急性淋巴细胞白血病组织病理学图像 | 结合深度学习(DL)和机器学习(ML)算法,解决了理解组织病理学图像和分类过程的复杂性 | 未提及具体局限性 | 提高急性淋巴细胞白血病的早期和精确诊断 | 急性淋巴细胞白血病的组织病理学图像 | 数字病理学 | 急性淋巴细胞白血病 | 深度学习(DL)和机器学习(ML) | SqueezeNet、神经网络(NN)、逻辑回归(LR)、随机森林(RF) | 图像 | 未提及具体样本数量 | NA | NA | NA | NA |
15827 | 2025-03-02 |
Advancing antibiotic discovery with bacterial cytological profiling: a high-throughput solution to antimicrobial resistance
2025, Frontiers in microbiology
IF:4.0Q2
DOI:10.3389/fmicb.2025.1536131
PMID:40018674
|
综述 | 本文综述了细菌细胞学分析(BCP)作为一种快速、可扩展且成本效益高的方法,用于识别抗生素作用机制,并探讨其在抗生素发现中的应用 | 介绍了BCP在药物发现中的潜力,特别是通过识别spirohexenolide A对耐甲氧西林金黄色葡萄球菌的细胞靶点,展示了其创新性 | 讨论了BCP的优势、局限性及潜在改进方向,并指出某些病原体的细胞学特征尚未被研究 | 推动抗生素发现,以应对抗菌素耐药性(AMR)这一全球健康威胁 | 不同细菌生物和不同类别的抗生素 | 数字病理学 | 抗菌素耐药性 | 细菌细胞学分析(BCP) | 深度学习 | 图像 | NA | NA | NA | NA | NA |
15828 | 2025-10-07 |
RETRACTED ARTICLE: Sustainable strategy for online physical education teaching using ResNet34 and big data
2024-12, Soft computing
IF:3.1Q2
DOI:10.1007/s00500-023-08524-y
PMID:37362298
|
研究论文 | 提出一种基于ResNet34和注意力机制的在线体育教学支持系统,用于实时分析和纠正学生运动动作 | 将注意力机制模块与ResNet34结合提升检测精度,系统具备可持续扩展数据集的能力以适应新运动类别 | NA | 开发可持续的在线体育教学支持系统,解决远程教学中运动动作指导和纠正的难题 | 在线体育教学中的学生运动动作(体操、舞蹈、篮球等) | 计算机视觉 | NA | 大数据分析 | CNN | 图像 | NA | NA | ResNet34 | 准确率,精确率,召回率 | NA |
15829 | 2025-03-02 |
Deep learning models using intracranial and scalp EEG for predicting sedation level during emergence from anaesthesia
2024-Dec, BJA open
DOI:10.1016/j.bjao.2024.100347
PMID:40018289
|
研究论文 | 本研究探讨了使用颅内和头皮脑电图(EEG)预测麻醉苏醒期间镇静水平的深度学习模型 | 结合颅内和头皮EEG数据,利用深度学习模型预测镇静水平,显著提高了预测准确性 | 样本量较小,仅涉及7名患者,且验证集仅包含5名患者的头皮EEG数据 | 研究目的是通过EEG监测预测麻醉苏醒期间的镇静水平,以提高麻醉管理的安全性 | 研究对象为接受颅内电极植入手术的7名难治性癫痫患者,以及5名仅提供头皮EEG数据的患者 | 机器学习 | 癫痫 | EEG | 深度学习模型 | EEG数据 | 7名患者(颅内和头皮EEG数据),5名患者(仅头皮EEG数据) | NA | NA | NA | NA |
15830 | 2025-10-07 |
Detection of glaucoma progression on longitudinal series of en-face macular optical coherence tomography angiography images with a deep learning model
2024-Nov-22, The British journal of ophthalmology
DOI:10.1136/bjo-2023-324528
PMID:39117359
|
研究论文 | 开发一种深度学习模型,利用纵向系列黄斑光学相干断层扫描血管成像图像检测青光眼进展 | 首次设计定制化卷积神经网络用于基于纵向OCTA图像的青光眼进展检测,相比传统逻辑回归模型表现更优 | 样本量相对有限(202只眼),需要外部验证来进一步验证模型性能 | 开发深度学习模型以检测青光眼进展 | 134名开角型青光眼患者的202只眼睛 | 计算机视觉 | 青光眼 | 光学相干断层扫描血管成像 | CNN | 图像 | 202只眼睛,平均随访3.5年,每只眼至少4次OCTA检查 | NA | 定制化卷积神经网络 | AUC, 敏感度, 特异度, 准确率 | NA |
15831 | 2025-10-07 |
Predicting phage-host interactions via feature augmentation and regional graph convolution
2024-Nov-22, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbae672
PMID:39727002
|
研究论文 | 提出一种名为MI-RGC的新方法,通过特征增强和区域图卷积来预测噬菌体-宿主相互作用 | 引入互信息进行特征增强,并设计区域图卷积模型来学习有意义的表示,通过区域级注意力机制处理不同距离邻居节点的贡献差异 | 未明确说明方法在高度稀疏数据下的过拟合风险控制效果 | 预测噬菌体-宿主相互作用,为噬菌体疗法开发提供支持 | 噬菌体及其宿主细菌 | 机器学习 | 细菌感染 | 深度学习 | 图卷积网络 | 序列数据, 环境样本数据 | 三个基准数据集 | NA | 区域图卷积模型 | NA | NA |
15832 | 2025-10-07 |
Automatic Segmentation and Radiomics for Identification and Activity Assessment of CTE Lesions in Crohn's Disease
2024-11-04, Inflammatory bowel diseases
IF:4.5Q1
DOI:10.1093/ibd/izad285
PMID:38011673
|
研究论文 | 开发用于克罗恩病CTE图像病灶自动分割的深度学习模型,并基于影像组学特征构建机器学习分类器评估疾病活动性 | 结合nnU-Net自动分割模型与影像组学特征分析,构建端到端的克罗恩病活动性评估系统 | 回顾性研究,样本量有限(分割数据集84例,分类数据集193例) | 开发自动分割模型并构建分类器评估克罗恩病活动性 | 克罗恩病患者的CTE图像 | 医学影像分析 | 克罗恩病 | CTE成像,影像组学分析 | nnU-Net,机器学习分类器 | CTE图像 | 分割数据集:84例CTE检查(平均年龄31±13岁,60名男性);分类数据集:193例CTE检查(平均年龄31±12岁,136名男性) | NA | nnU-Net | Dice相似系数,AUC,敏感度,特异度,准确度 | NA |
15833 | 2025-03-02 |
A Deep Learning Framework for End-to-End Control of Powered Prostheses
2024-May, IEEE robotics and automation letters
IF:4.6Q2
DOI:10.1109/lra.2024.3374189
PMID:40012860
|
研究论文 | 本文提出了一种深度学习框架,用于端到端控制动力假肢,消除了传统任务分类、状态机和中级控制方程的需求 | 通过将整个控制问题压缩到一个深度神经网络中,消除了传统任务分类、状态机和中级控制方程的需求 | 研究仅针对五种运动模式进行,样本量为12名经股截肢者,可能需要更多样化的数据和更大的样本量来验证模型的普适性 | 探索深度学习在动力假肢控制中的应用,以实现端到端的关节级辅助 | 动力膝踝假肢(OSL)及其传感器数据 | 机器学习 | NA | 深度学习 | 时间卷积网络(TCN) | 传感器数据 | 12名经股截肢者 | NA | NA | NA | NA |
15834 | 2024-08-24 |
Editorial for "Deep Learning Nomogram for the Identification of Deep Stromal Invasion in Patients With Early-Stage Cervical Adenocarcinoma and Adenosquamous Carcinoma: A Multicenter Study"
2024-04, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28881
PMID:37410077
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
15835 | 2025-10-07 |
Deep Learning Identifies High-Quality Fundus Photographs and Increases Accuracy in Automated Primary Open Angle Glaucoma Detection
2024-01-02, Translational vision science & technology
IF:2.6Q2
DOI:10.1167/tvst.13.1.23
PMID:38285462
|
研究论文 | 开发并评估用于评估眼底照片质量的深度学习模型,并定量测量其在独立研究人群中自动化原发性开角型青光眼检测中的影响 | 首次开发专门用于评估眼底照片质量的深度学习模型,并证明通过自动质量评估筛选低质量照片可显著提高青光眼检测模型的准确性 | 研究数据来源于特定研究队列,需要在更广泛的人群中验证模型的泛化能力 | 提高自动化原发性开角型青光眼检测的准确性 | 眼底照片 | 计算机视觉 | 青光眼 | 眼底摄影 | 深度学习 | 图像 | 2815张来自DIGS/ADAGES研究的眼底照片和11350张来自OHTS研究的眼底照片 | NA | NA | AUROC | NA |
15836 | 2025-03-02 |
Rapid and accurate classification of mung bean seeds based on HPMobileNet
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1474906
PMID:40017618
|
研究论文 | 本研究提出了一种基于深度学习的绿豆种子快速准确分类方法,通过改进MobileNetV2模型,引入了DMS块、ECA块和Mish激活函数,构建了高精度网络模型HPMobileNet | 提出了HPMobileNet模型,结合DMS块、ECA块和Mish激活函数,显著提升了绿豆种子分类的准确率 | 研究未涉及模型在其他作物种子分类中的泛化能力,且未来优化和应用潜力仍需进一步探索 | 开发一种高效准确的绿豆种子分类方法,推动智能农业技术的发展 | 八种不同品种的绿豆种子 | 计算机视觉 | NA | 深度学习 | HPMobileNet(基于MobileNetV2改进) | 图像 | 34,890张绿豆种子图像 | NA | NA | NA | NA |
15837 | 2025-03-02 |
A method of deep network auto-training based on the MTPI auto-transfer learning and a reinforcement learning algorithm for vegetation detection in a dry thermal valley environment
2024, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2024.1448669
PMID:40017619
|
研究论文 | 本文提出了一种基于MTPI自动迁移学习和强化学习算法的深度网络自动训练方法,用于干旱热谷环境中的植被检测 | 结合了MTPI(最大迁移潜力指数方法)和MTSA(多汤普森采样算法)强化学习,用于数据集自动增强和网络自动训练,减少了人工经验和试错成本 | 现有自动训练方法适应于简单数据集和网络结构,在非结构化环境(如干旱热谷环境)中实用性较低 | 减少深度学习中的手动干预,提高复杂植被信息收集的效率 | 干旱热谷环境中的植被 | 计算机视觉 | NA | 深度学习,强化学习,迁移学习 | FCN, Seg-Net, U-Net, Seg-Res-Net 50 | 图像 | NA | NA | NA | NA | NA |
15838 | 2025-10-07 |
Natural language processing to identify social determinants of health in Alzheimer's disease and related dementia from electronic health records
2023-12, Health services research
IF:3.1Q1
DOI:10.1111/1475-6773.14210
PMID:37534741
|
研究论文 | 开发基于自然语言处理的算法从电子健康记录中识别阿尔茨海默病及相关痴呆患者的社会健康决定因素 | 首次针对ADRD患者开发专门识别七类社会健康决定因素的NLP算法,并比较了基于规则方法与深度学习方法的效果 | 住房和药物不安全两个领域的识别性能相对较差,仅使用单一医疗中心的231名患者数据 | 从非结构化电子健康记录中自动识别ADRD患者的社会健康决定因素 | 阿尔茨海默病及相关痴呆患者 | 自然语言处理 | 阿尔茨海默病及相关痴呆 | 自然语言处理 | 基于规则的NLP算法,深度学习,正则化逻辑回归 | 文本 | 1000份医疗记录(来自231名ADRD患者) | NA | NA | 准确率,灵敏度,特异性,F1分数,AUC | NA |
15839 | 2025-03-02 |
Editorial for "Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi-Institutional Cohort Study"
2023-12, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28680
PMID:36939778
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
15840 | 2025-03-02 |
Editorial for "Implementable Deep Learning for Multi-sequence Proton MRI Lung Segmentation: A Multi-center, Multi-vendor and Multi-disease Study"
2023-10, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.28661
PMID:36847749
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |