本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15881 | 2024-09-30 |
Federated and Transfer Learning Methods for the Classification of Melanoma and Nonmelanoma Skin Cancers: A Prospective Study
2023-Oct-13, Sensors (Basel, Switzerland)
DOI:10.3390/s23208457
PMID:37896548
|
研究论文 | 本文综述了联邦学习和迁移学习方法在黑色素瘤和非黑色素瘤皮肤癌分类中的应用 | 本文综述了最新的联邦学习和迁移学习算法在恶性皮肤癌分类中的应用,并提出了未来研究的方向 | 本文综述了现有研究的局限性和挑战 | 帮助皮肤科医生和其他医疗专业人员在早期阶段对患者进行治疗 | 黑色素瘤和非黑色素瘤皮肤癌的分类 | 机器学习 | 皮肤癌 | 联邦学习、迁移学习 | NA | 图像 | 86篇文章 |
15882 | 2024-09-30 |
Aurora retrieval in all-sky images based on hash vision transformer
2023-Oct, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2023.e20609
PMID:37916095
|
研究论文 | 本文提出了一种基于哈希视觉变换器的极光检索方法,用于从全天图像中提取极光特征 | 本文引入了基于Vision Transformer的Hash-Transformer模型,有效融合了极光图像的局部和全局特征表示 | NA | 研究极光现象的形态和时间特征,以更好地理解大规模磁层过程 | 极光现象及其在全天图像中的特征 | 计算机视觉 | NA | Vision Transformer | Hash-Transformer | 图像 | 基于真实世界数据 |
15883 | 2024-09-29 |
Automatic detection of circulating tumor cells and cancer associated fibroblasts using deep learning
2023-04-07, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-32955-0
PMID:37029224
|
研究论文 | 本文开发了一种定制的成像系统和深度学习方法,用于自动检测循环肿瘤细胞和癌症相关成纤维细胞 | 本文的创新点在于开发了一种定制的成像系统和深度学习方法,显著提高了循环肿瘤细胞和癌症相关成纤维细胞的检测精度 | NA | 本文的研究目的是开发一种高效的方法来自动检测循环肿瘤细胞和癌症相关成纤维细胞,以辅助癌症诊断和预后 | 本文的研究对象是循环肿瘤细胞和癌症相关成纤维细胞 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 使用了培养的癌症细胞和癌症相关成纤维细胞样本 |
15884 | 2024-09-30 |
Using Automatic Speech Recognition to Measure the Intelligibility of Speech Synthesized from Brain Signals
2023-Apr, International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering
DOI:10.1109/ner52421.2023.10123751
PMID:39323876
|
研究论文 | 本文介绍了一种基于深度学习的AI听者,用于客观、快速、自动地评估脑机接口合成语音的可理解性 | 提出了一种新的深度学习模型AI听者,用于评估脑机接口合成语音的可理解性,并发现多个先前发布的脑机接口输出数据集不可理解 | 尚未提及 | 开发一种客观、快速、自动的方法来评估脑机接口合成语音的可理解性 | 脑机接口合成语音的可理解性 | 自然语言处理 | NA | 自动语音识别(ASR) | 深度学习模型(Deepspeech, Wav2vec 2.0, Kaldi, XLSR-Wav2vec 2.0) | 语音数据 | 包括健康语音、构音障碍者语音和脑机接口合成语音的多个语音数据集 |
15885 | 2024-09-29 |
Deep learning model integrating positron emission tomography and clinical data for prognosis prediction in non-small cell lung cancer patients
2023-Feb-06, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-023-05160-z
PMID:36747153
|
研究论文 | 本文提出了一种结合正电子发射断层扫描(PET)图像和临床数据的多模态深度学习模型,用于非小细胞肺癌(NSCLC)患者的预后预测 | 本文的创新点在于将PET图像信息与临床数据结合,通过深度学习模型提高了NSCLC患者生存预测的准确性 | 本文未详细讨论模型的泛化能力和在不同数据集上的表现 | 提高非小细胞肺癌患者的生存预测准确性 | 非小细胞肺癌患者 | 机器学习 | 肺癌 | 深度学习 | 多模态深度学习模型 | 图像和临床数据 | NA |
15886 | 2024-09-29 |
Review on the Evaluation and Development of Artificial Intelligence for COVID-19 Containment
2023-Jan-03, Sensors (Basel, Switzerland)
DOI:10.3390/s23010527
PMID:36617124
|
综述 | 本文综述了人工智能在COVID-19防控中的评估与发展 | 本文展示了人工智能算法与物联网穿戴设备的集成在COVID-19检测和预测中的有效性和效率 | NA | 研究人工智能在COVID-19大流行中的作用 | COVID-19的预测、检测和防控方法 | 机器学习 | COVID-19 | 机器学习、深度学习、图像处理、目标检测、图像分割、少样本学习 | NA | 图像、临床数据、声音、生物医学数据、社会人口数据 | NA |
15887 | 2024-09-29 |
Application of Machine Learning and Deep Learning Techniques for COVID-19 Screening Using Radiological Imaging: A Comprehensive Review
2023, SN computer science
DOI:10.1007/s42979-022-01464-8
PMID:36467853
|
综述 | 本文综述了使用放射影像学技术进行COVID-19筛查的机器学习和深度学习方法 | 介绍了多种AI/ML/DL算法用于计算机辅助检测COVID-19的创新点 | 讨论了已发表工作的优缺点和局限性 | 总结和比较用于COVID-19诊断预测的AI/ML/DL方法 | COVID-19的放射影像学筛查 | 机器学习 | 呼吸系统疾病 | 机器学习、深度学习 | 多种模型 | 影像 | 265篇文章 |
15888 | 2024-09-29 |
COVID-19-The Role of Artificial Intelligence, Machine Learning, and Deep Learning: A Newfangled
2023, Archives of computational methods in engineering : state of the art reviews
IF:9.7Q1
DOI:10.1007/s11831-023-09882-4
PMID:36685135
|
研究论文 | 本文综述了机器学习、深度学习和人工智能在应对COVID-19疫情和诊断其严重影响中的应用 | 本文通过比较分析现有文献中的预测方法,突出了机器学习、深度学习和人工智能技术在应对COVID-19疫情中的重要性 | NA | 探讨机器学习、深度学习和人工智能在应对COVID-19疫情中的应用 | COVID-19疫情及其诊断方法 | 机器学习 | COVID-19 | 机器学习、深度学习、人工智能 | NA | NA | NA |
15889 | 2024-09-29 |
Deep Learning Enhances Multiparametric Dynamic Volumetric Photoacoustic Computed Tomography In Vivo (DL-PACT)
2022-Nov-10, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202202089
PMID:36354200
|
研究论文 | 本文介绍了一种基于深度学习的增强型多参数动态体积光声计算机断层扫描技术(DL-PACT),通过减少有限视角伪影和提高时间分辨率,显著提升了光声计算机断层扫描(PACT)的图像质量 | 提出了一种基于深度学习的DL-PACT方法,通过使用少量超声换能器元素,实现了高质量的静态结构和动态增强全身图像以及动态功能脑图像的快速获取 | NA | 提高光声计算机断层扫描(PACT)的图像质量和时间分辨率,降低系统成本 | 光声计算机断层扫描(PACT)图像的增强和优化 | 计算机视觉 | NA | 光声计算机断层扫描(PACT) | 深度学习 | 图像 | 活体动物和人类 |
15890 | 2024-09-29 |
Deep learning explains the biology of branched glycans from single-cell sequencing data
2022-Oct-21, iScience
IF:4.6Q1
DOI:10.1016/j.isci.2022.105163
PMID:36217547
|
研究论文 | 本文利用单细胞测序数据和深度学习模型预测细胞的糖链表型,并解释其生物学意义 | 首次使用深度学习模型从转录组数据中预测细胞的糖链表型,并通过SHAP解释模型识别出高预测性基因 | NA | 揭示糖基化在细胞水平的调控机制及其功能意义 | 小鼠T淋巴细胞的糖链表型和转录组数据 | 机器学习 | NA | SUGAR-seq | 深度学习模型 | 转录组数据 | 小鼠T淋巴细胞 |
15891 | 2024-09-29 |
Advances in Deep Learning for Tuberculosis Screening using Chest X-rays: The Last 5 Years Review
2022-Oct-15, Journal of medical systems
IF:3.5Q2
DOI:10.1007/s10916-022-01870-8
PMID:36241922
|
综述 | 本文回顾了过去五年中使用胸部X光片进行肺结核筛查的深度学习技术的进展 | 本文总结了过去五年中深度学习技术在肺结核筛查中的最新进展,并进行了系统性回顾和元分析 | 本文主要集中在过去五年的研究,可能无法涵盖所有相关研究 | 回顾和分析过去五年中深度学习技术在肺结核筛查中的应用 | 胸部X光片图像和肺结核筛查 | 计算机视觉 | 肺结核 | 深度学习 | 卷积神经网络(CNN) | 图像 | 54篇同行评审的研究文章 |
15892 | 2024-09-29 |
AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions
2022-Oct, Ingenierie et recherche biomedicale : IRBM = Biomedical engineering and research
DOI:10.1016/j.irbm.2021.07.002
PMID:34336141
|
综述 | 本文综述了利用人工智能技术从医学影像中检测COVID-19的最新进展和挑战 | 本文总结了当前最先进的深度学习和机器学习模型在COVID-19检测中的应用,并提出了未来可能的研究方向 | 本文主要讨论了技术挑战,未深入探讨伦理和社会影响等非技术挑战 | 旨在评估和总结利用人工智能技术从医学影像中检测COVID-19的最新进展 | COVID-19的检测方法和相关技术 | 计算机视觉 | COVID-19 | 深度学习和机器学习 | CNN、LSTM等 | 医学影像(X射线和CT扫描) | 140篇研究论文 |
15893 | 2024-09-29 |
Validation of an autonomous artificial intelligence-based diagnostic system for holistic maculopathy screening in a routine occupational health checkup context
2022-Oct, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
DOI:10.1007/s00417-022-05653-2
PMID:35567610
|
研究论文 | 本研究评估了一种自主人工智能系统在常规职业健康检查中检测眼底摄影中常见中心视网膜病变的能力 | 本研究采用了一种综合的人工智能方法,能够同时高精度检测糖尿病视网膜病变、年龄相关性黄斑变性和痣,并减少了漏诊的风险 | 本研究使用的数据集主要来自职业健康检查,可能限制了其在其他场景中的适用性 | 评估自主人工智能系统在常规职业健康检查中检测眼底摄影中常见中心视网膜病变的能力 | 眼底摄影图像中的糖尿病视网膜病变、年龄相关性黄斑变性、青光眼性视神经病变和痣 | 计算机视觉 | 眼科疾病 | 深度学习 | NA | 图像 | 5918张图像(来自2839名个体) |
15894 | 2024-09-29 |
Hierarchical deep learning for predicting GO annotations by integrating protein knowledge
2022-09-30, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btac536
PMID:35929781
|
研究论文 | 提出了一种名为DeeProtGO的新型深度学习模型,用于通过整合蛋白质知识来预测GO注释 | DeeProtGO模型通过整合更多的蛋白质知识,显著提高了GO注释的预测质量 | NA | 开发一种可靠的计算系统,用于自动预测蛋白质功能注释,以应对高通量测序数据的增长 | 蛋白质功能注释的预测 | 机器学习 | NA | 深度学习 | 深度学习模型 | 蛋白质序列数据 | 18种不同的预测问题,定义为三个GO子本体、蛋白质类型和分类学王国 |
15895 | 2024-09-29 |
DefectTrack: a deep learning-based multi-object tracking algorithm for quantitative defect analysis of in-situ TEM videos in real-time
2022-Sep-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-022-19697-1
PMID:36127375
|
研究论文 | 提出了一种基于深度学习的实时多目标跟踪算法DefectTrack,用于定量分析原位透射电子显微镜视频中的缺陷 | 首次开发了专门用于跟踪原位透射电子显微镜视频中缺陷簇的深度学习多目标跟踪模型 | NA | 解决原位透射电子显微镜视频数据转化为缺陷簇动态属性信息的瓶颈问题 | 原位透射电子显微镜视频中的缺陷簇 | 计算机视觉 | NA | 深度学习 | 多目标跟踪模型 | 视频 | 测试集上的多目标跟踪精度为66.43%,大部分跟踪率为67.81% |
15896 | 2024-09-29 |
Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report
2022-Aug-15, Journal of cardiovascular development and disease
IF:2.4Q2
DOI:10.3390/jcdd9080268
PMID:36005433
|
研究论文 | 本文探讨了COVID-19对血管系统的深层次损害,并分析了放射影像学、人工智能和组织特征化在其中的作用 | 本文提出了四种假设来解释COVID-19在放射影像中引起的血管损伤,并使用了三种AI模型(机器学习、深度学习和迁移学习)进行组织特征化 | 本文主要基于文献回顾和理论分析,缺乏大规模的临床实验数据支持 | 研究COVID-19对血管系统的病理生理影响,并探讨放射影像学和人工智能在诊断和治疗中的应用 | COVID-19引起的肺部、肾脏、冠状动脉和颈动脉的血管损伤 | 计算机视觉 | 传染病 | MRI、CT、超声 | 机器学习、深度学习、迁移学习 | 影像 | 296项研究 |
15897 | 2024-09-29 |
A privacy-aware method for COVID-19 detection in chest CT images using lightweight deep conventional neural network and blockchain
2022-06, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2022.105461
PMID:35366470
|
研究论文 | 提出了一种基于轻量级深度卷积神经网络和区块链技术的隐私保护COVID-19检测方法 | 利用区块链技术确保数据隐私,并通过迁移学习技术优化模型初始化 | 未提及具体的数据隐私保护机制和区块链技术的实现细节 | 开发一种可靠且隐私保护的COVID-19检测方法 | COVID-19患者的胸部CT图像 | 计算机视觉 | COVID-19 | 区块链技术 | CNN | 图像 | 五个不同医院的数据集,包括Boukan Dr. Shahid Gholipour医院、Tabriz Emam Reza医院、Mahabad Emam Khomeini医院、Maragheh Dr.Beheshti医院和Miandoab Abbasi医院的数据集 |
15898 | 2024-09-29 |
Deep learning tools for advancing drug discovery and development
2022-May, 3 Biotech
IF:2.6Q3
DOI:10.1007/s13205-022-03165-8
PMID:35433167
|
综述 | 本文综述了深度学习工具在药物发现和开发中的应用 | 介绍了深度学习在药物发现过程中的多种应用,包括药物靶点识别、药物-靶点相互作用、蛋白质结构预测等 | 讨论了当前深度学习工具在药物发现和开发中面临的挑战和前景 | 探讨深度学习技术如何加速药物发现和开发过程 | 药物发现和开发过程中的各个环节 | 机器学习 | NA | 深度学习 | NA | 多组学数据 | NA |
15899 | 2024-09-29 |
Stepwise-edited, human melanoma models reveal mutations' effect on tumor and microenvironment
2022-04-29, Science (New York, N.Y.)
DOI:10.1126/science.abi8175
PMID:35482859
|
研究论文 | 本文通过逐步引入突变到健康的人类黑素细胞中,建立了九种遗传上不同的黑色素瘤细胞模型,研究了这些突变对肿瘤及其微环境的影响 | 本文创新性地通过逐步引入突变,建立了多个遗传上不同的黑色素瘤细胞模型,并研究了这些突变对肿瘤及其微环境的影响 | NA | 研究基因突变与人类癌症特定恶性表型之间的因果关系 | 人类黑素细胞及其突变后的黑色素瘤细胞模型 | 数字病理学 | 黑色素瘤 | 基因编辑 | 深度学习模型 | 基因型数据 | 九种遗传上不同的黑色素瘤细胞模型 |
15900 | 2024-09-29 |
Inferring ongoing cancer evolution from single tumour biopsies using synthetic supervised learning
2022-04, PLoS computational biology
IF:3.8Q1
DOI:10.1371/journal.pcbi.1010007
PMID:35482653
|
研究论文 | 本文提出了一种名为TumE的合成监督学习方法,结合癌症进化模拟模型和贝叶斯神经网络,用于从单个肿瘤活检中推断正在进行的癌症进化 | TumE方法显著提高了检测正选择、解卷积选择亚克隆群体和估计亚克隆频率的准确性和推断时间 | NA | 开发一种新的方法来推断单个肿瘤活检中的癌症进化 | 癌症进化和亚克隆选择 | 机器学习 | NA | 贝叶斯神经网络 | 神经网络 | 基因组数据 | 合成和患者肿瘤样本 |