本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15881 | 2024-09-21 |
Classification of Brain Tumours in MRI Images using a Convolutional Neural Network
2024, Current medical imaging
IF:1.1Q3
|
研究论文 | 本文使用卷积神经网络(CNN)对脑部MRI图像中的肿瘤进行分类 | 提出的CNN模型在处理资源消耗较少的情况下,实现了更高的准确率和损失减少 | 实验在相对有限的样本数据集上进行 | 利用深度学习技术提高脑肿瘤MRI图像分类的准确性 | 脑部MRI图像中的肿瘤 | 计算机视觉 | 脑肿瘤 | 卷积神经网络(CNN) | CNN | 图像 | 相对有限的样本数据集 |
15882 | 2024-09-21 |
An Early Detection and Classification of Alzheimer's Disease Framework Based on ResNet-50
2024, Current medical imaging
IF:1.1Q3
|
研究论文 | 本文提出了一种基于ResNet-50的阿尔茨海默病早期检测和分类框架 | 通过使用深度残差网络(ResNet)模型和图像预处理技术,解决了传统卷积神经网络(CNN)中卷积层的局限性 | 尽管某些模型在准确性上表现更好,但它们容易过拟合 | 开发一种更有效的阿尔茨海默病早期检测系统 | 阿尔茨海默病患者 | 计算机视觉 | 阿尔茨海默病 | 深度残差网络(ResNet) | ResNet-50 | MRI扫描图像 | 阿尔茨海默病患者的MRI扫描数据集 |
15883 | 2024-09-21 |
Convex Hull Prediction for Adaptive Video Streaming by Recurrent Learning
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2024.3455989
PMID:39264770
|
研究论文 | 提出了一种基于深度学习的自适应视频流凸包预测方法,通过循环卷积网络(RCN)分析视频片段的时空复杂度来预测其凸包 | 采用循环卷积网络(RCN)和两步迁移学习方案,显著减少了预编码时间和计算开销 | 未提及具体限制 | 减少自适应视频流中预编码步骤的时间和计算开销 | 视频片段的凸包预测 | 计算机视觉 | NA | 深度学习 | 循环卷积网络(RCN) | 视频 | 未提及具体样本数量 |
15884 | 2024-09-21 |
Change Representation and Extraction in Stripes: Rethinking Unsupervised Hyperspectral Image Change Detection With an Untrained Network
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2024.3438100
PMID:39269800
|
研究论文 | 提出了一种新的无监督高光谱图像变化检测方法StripeCD,通过在无训练网络中集成优化建模来表示和建模条纹变化 | 引入了一种新的特征空间表示方法,通过条纹形式表示变化特征,并提出了一种多尺度前向-后向分割框架来突出显著变化 | 依赖于无训练网络的特征波动性可能导致变化检测结果不准确 | 改进无监督高光谱图像变化检测方法,减少对标注数据的依赖 | 高光谱图像的变化检测 | 计算机视觉 | NA | 无训练卷积网络 | 卷积神经网络 | 图像 | 涉及三个广泛使用的高光谱图像数据集 |
15885 | 2024-09-21 |
Diagnostic Value of Artificial Intelligence in Minimal Breast Lesions Based on Real-Time Dynamic Ultrasound Imaging
2024, International journal of general medicine
IF:2.1Q2
DOI:10.2147/IJGM.S479969
PMID:39295853
|
研究论文 | 探讨基于实时动态超声成像系统的人工智能在诊断微小乳腺病变中的价值 | 使用基于实时动态超声成像系统的人工智能进行微小乳腺病变的诊断 | 仍存在一些漏诊和误诊的情况 | 研究人工智能在微小乳腺病变诊断中的应用价值 | 直径≤10mm的微小乳腺病变 | 计算机视觉 | 乳腺癌 | 深度学习算法 | 深度学习 | 视频 | 291例微小乳腺病变,其中228例良性,63例恶性 |
15886 | 2024-09-21 |
A general prediction model for compound-protein interactions based on deep learning
2024, Frontiers in pharmacology
IF:4.4Q1
DOI:10.3389/fphar.2024.1465890
PMID:39295942
|
研究论文 | 本文开发了一种基于深度学习的化合物-蛋白质相互作用预测模型,并验证了其在中药中的应用 | 本文提出了一个集成大规模生物活性基准数据集和深度学习算法的计算模型,用于预测化合物-蛋白质相互作用,并在中药中验证了其有效性 | 由于化合物和目标的多样性以及缺乏大规模相互作用数据集和负数据集,现有计算方法在预测准确性和泛化能力方面面临挑战 | 开发一种准确的化合物-蛋白质相互作用预测模型,以促进药物发现和理解中药的生物活性 | 化合物-蛋白质相互作用,特别是中药中的化合物 | 机器学习 | NA | 深度学习 | NA | 生物活性数据 | 使用了黄芪和白花蛇舌草这对中药组合中的活性化合物,并从多个公共数据库和文献中收集了这些化合物的完整目标数据 |
15887 | 2024-09-21 |
Analysis and comparison of retinal vascular parameters under different glucose metabolic status based on deep learning
2024, International journal of ophthalmology
IF:1.9Q2
DOI:10.18240/ijo.2024.09.02
PMID:39296560
|
研究论文 | 本文开发了一种基于深度学习的模型,用于自动分割视网膜血管,并分析和比较不同血糖代谢状态下的血管参数 | 本文首次使用深度学习模型U-Net进行视网膜血管分割,并分析了不同血糖代谢状态下的血管参数差异 | 样本量相对较小,可能影响结果的普适性 | 评估人工智能在图像分割和视网膜血管参数分析中预测糖尿病前期的潜力 | 视网膜血管参数在不同血糖代谢状态下的差异 | 计算机视觉 | 糖尿病 | 深度学习 | U-Net | 图像 | 总共600只眼睛,包括200名正常人、200名糖尿病前期患者和200名糖尿病患者 |
15888 | 2024-09-21 |
Systematic bibliometric and visualized analysis of research hotspots and trends on the application of artificial intelligence in glaucoma from 2013 to 2022
2024, International journal of ophthalmology
IF:1.9Q2
DOI:10.18240/ijo.2024.09.22
PMID:39296573
|
综述 | 对2013年至2022年间人工智能在青光眼领域的应用进行文献计量分析和可视化研究 | 通过CiteSpace和VOSviewer软件分析了不同国家、机构、作者和期刊的贡献及共现关系,揭示了该领域的研究热点和未来趋势 | 文章主要关注文献计量分析,未深入探讨具体技术细节和临床应用效果 | 全面了解人工智能在青光眼领域的研究现状,并识别未来研究的新方向 | 2013年至2022年间发表的关于人工智能在青光眼领域应用的英文文章 | 计算机视觉 | 眼科疾病 | NA | NA | 文本 | 750篇英文文章 |
15889 | 2024-09-21 |
Deep learning-based ultrasonographic classification of canine chronic kidney disease
2024, Frontiers in veterinary science
IF:2.6Q1
DOI:10.3389/fvets.2024.1443234
PMID:39296582
|
研究论文 | 本研究开发了一种基于深度学习的模型,用于通过超声图像对犬慢性肾病(CKD)进行分类,并评估其与兽医影像专家的诊断性能 | 首次尝试将人工智能应用于兽医超声诊断,并开发了一种基于卷积神经网络的对象检测算法来分类犬慢性肾病的IRIS阶段 | 多类分类的准确性较低,仅为0.46 | 开发和验证一种基于深度学习的模型,用于通过超声图像对犬慢性肾病进行分类,并评估其临床实用性 | 犬慢性肾病(CKD)的超声图像 | 机器学习 | 犬病 | 卷积神经网络(CNN) | CNN | 图像 | 883张超声图像,来自198只狗 |
15890 | 2024-09-21 |
Deepfake: definitions, performance metrics and standards, datasets, and a meta-review
2024, Frontiers in big data
IF:2.4Q2
DOI:10.3389/fdata.2024.1400024
PMID:39296632
|
综述 | 本文全面概述了深度伪造(deepfake)的概念,涵盖了定义、性能指标和标准、相关数据集等多个重要方面 | 本文提供了对深度伪造最全面的综述,包括对15篇相关综述论文的元分析 | NA | 全面了解和分析深度伪造的概念、性能指标、标准、数据集以及相关挑战和建议 | 深度伪造的定义、性能指标和标准、相关数据集以及相关综述论文 | 计算机视觉 | NA | 深度学习 | NA | 图像、视频、音频 | 15篇相关综述论文 |
15891 | 2024-09-21 |
Utilizing deep learning models in an intelligent spiral drawing classification system for Parkinson's disease classification
2024, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2024.1453743
PMID:39296906
|
研究论文 | 本文提出了一种利用深度学习模型进行智能螺旋绘图分类系统,用于帕金森病的分类 | 本文通过分析手绘螺旋图中的重要和独特特征,利用迁移学习模型(如VGG19、InceptionV3、ResNet50v2和DenseNet169)进行帕金森病的诊断 | 本文的研究样本量较小,未来需要扩大数据集并进一步优化迁移学习策略 | 开发一种高效准确的帕金森病分类系统,以改善患者的生活质量和早期治疗效果 | 手绘螺旋图和帕金森病 | 机器学习 | 神经退行性疾病 | 迁移学习 | InceptionV3 | 图像 | 102个手绘螺旋图 |
15892 | 2024-09-21 |
A quantitative analysis of artificial intelligence research in cervical cancer: a bibliometric approach utilizing CiteSpace and VOSviewer
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1431142
PMID:39296978
|
研究论文 | 本研究通过文献计量学方法,利用CiteSpace和VOSviewer分析了人工智能在宫颈癌研究中的应用趋势 | 首次系统性地评估了人工智能在宫颈癌研究中的作用,并指出了未来的研究方向 | 研究主要基于文献计量学方法,可能忽略了实际应用中的细节和挑战 | 评估人工智能在宫颈癌研究中的作用,并探讨其未来发展趋势 | 宫颈癌研究领域的文献和相关作者 | 机器学习 | 宫颈癌 | 文献计量学 | NA | 文本 | 分析了927篇文章,涉及5,299名作者和81个地区 |
15893 | 2024-09-21 |
Super-resolution reconstruction improves multishell diffusion: using radiomics to predict adult-type diffuse glioma IDH and grade
2024, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2024.1435204
PMID:39296980
|
研究论文 | 本文通过深度学习超分辨率重建技术提高多壳扩散图像的分辨率,并开发和验证了预测成人弥漫性胶质瘤IDH状态和2/3级肿瘤的模型 | 使用深度学习超分辨率重建技术提高多壳扩散图像的分辨率,并开发了新的预测模型 | 高级扩散模型在诊断性能上并未优于简单扩散模型 | 提高多壳扩散图像的分辨率,并开发预测成人弥漫性胶质瘤IDH状态和2/3级肿瘤的模型 | 成人弥漫性胶质瘤的IDH状态和2/3级肿瘤 | 计算机视觉 | 脑肿瘤 | 深度学习超分辨率重建 | 生成对抗网络 | 图像 | 90例成人弥漫性胶质瘤患者 |
15894 | 2024-09-21 |
Detecting common coccinellids found in sorghum using deep learning models
2023-06-16, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-36738-5
PMID:37328502
|
研究论文 | 本文开发并训练了深度学习模型,用于检测和分类高粱中常见的瓢虫 | 首次开发了用于高粱中瓢虫检测和分类的深度学习模型 | NA | 开发自动化技术以检测和分类高粱中的瓢虫,减少对杀虫剂的依赖 | 高粱中常见的七种瓢虫 | 计算机视觉 | NA | 深度学习 | Faster R-CNN, YOLOv5, YOLOv7 | 图像 | 从iNaturalist项目中提取的图像 |
15895 | 2024-09-21 |
Detecting stress caused by nitrogen deficit using deep learning techniques applied on plant electrophysiological data
2023-06-14, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-023-36683-3
PMID:37316610
|
研究论文 | 本文利用深度学习技术分析植物电生理数据,检测由氮缺乏引起的植物应激反应 | 本文首次将深度学习技术应用于植物电生理记录中识别植物应激反应,无需预先计算特征,自动学习分类目标 | NA | 检测由氮缺乏引起的植物应激反应 | 16株在典型生产条件下生长的番茄植物的电生理数据 | 机器学习 | NA | 深度学习 | NA | 电生理数据 | 16株番茄植物 |
15896 | 2024-09-21 |
Bayesian interpolation with deep linear networks
2023-Jun-06, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2301345120
PMID:37252994
|
研究论文 | 本文研究了深度、宽度和数据集大小对模型质量的联合影响,并给出了线性网络在特定条件下的完整解决方案 | 提出了一个新的有效深度概念,并展示了无限深度线性网络在数据无关先验下的最优预测能力 | 研究仅限于输出维度为一的线性网络,并使用零噪声贝叶斯推断和均方误差作为负对数似然 | 探讨神经网络深度、宽度和数据集大小对模型质量的联合影响 | 线性网络在特定条件下的预测后验和贝叶斯模型证据 | 机器学习 | NA | 贝叶斯推断 | 线性网络 | 数值数据 | NA |
15897 | 2024-09-21 |
An end-to-end deep learning method for protein side-chain packing and inverse folding
2023-06-06, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2216438120
PMID:37253017
|
研究论文 | 提出了一种端到端的深度学习方法AttnPacker,用于蛋白质侧链包装和逆折叠 | AttnPacker直接利用骨架3D几何结构同时计算所有侧链坐标,无需依赖离散的旋转异构体库或进行昂贵的构象搜索和采样步骤,显著提高了计算效率 | NA | 解决蛋白质侧链包装问题,提高蛋白质结构预测、优化和设计的速度和准确性 | 蛋白质侧链构象 | 机器学习 | NA | 深度学习 | NA | 蛋白质结构数据 | CASP13和CASP14中的天然和非天然蛋白质骨架 |
15898 | 2024-09-21 |
Variation in foraging activity influences area-restricted search behaviour by bottlenose dolphins
2023-Jun, Royal Society open science
IF:2.9Q1
DOI:10.1098/rsos.221613
PMID:37325592
|
研究论文 | 研究了宽吻海豚的区域限制搜索行为与其觅食活动之间的关系 | 利用被动声学监测和基于深度学习的技术,首次提供了宽吻海豚区域限制搜索行为的一个驱动因素的实证证据 | 研究仅限于特定种群的宽吻海豚,且依赖于特定的声学数据 | 探讨区域限制搜索行为在海洋系统中的驱动因素 | 宽吻海豚的区域限制搜索行为及其与觅食活动的关系 | NA | NA | 被动声学监测 | 卷积神经网络 | 声学数据 | 特定种群的宽吻海豚 |
15899 | 2024-09-21 |
Quantitative characterization of zebrafish development based on multiple classifications using Mueller matrix OCT
2023-Jun-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.488614
PMID:37342688
|
研究论文 | 本文提出了一种基于Mueller矩阵光学相干断层扫描(Mueller matrix OCT)和深度学习的非侵入性方法,用于定量分析斑马鱼多个器官在其生长过程中的发育情况 | 结合Mueller矩阵OCT和深度学习技术,首次实现了对斑马鱼多个器官发育过程的定量分析 | NA | 开发一种非侵入性的方法,用于定量分析斑马鱼多个器官在其生长过程中的发育情况 | 斑马鱼的多个器官,包括身体、眼睛、脊柱、卵黄囊和游泳膀胱 | 生物医学工程 | NA | Mueller矩阵光学相干断层扫描(Mueller matrix OCT) | U-Net网络 | 三维图像 | 从第1天到第19天的斑马鱼胚胎 |
15900 | 2024-09-21 |
Prediction of clinicopathological features, multi-omics events and prognosis based on digital pathology and deep learning in HR+/HER2- breast cancer
2023-May-30, Journal of thoracic disease
IF:2.1Q3
DOI:10.21037/jtd-23-445
PMID:37324098
|
研究论文 | 本研究利用深度学习技术,基于数字病理图像预测HR+/HER2-乳腺癌患者的临床病理特征、多组学事件及预后 | 首次在HR+/HER2-乳腺癌中应用深度学习模型预测治疗靶点和预后 | 研究样本量有限,且仅基于单一中心的病理图像数据 | 开发基于深度学习的模型,预测HR+/HER2-乳腺癌患者的临床病理特征、多组学特征及预后 | HR+/HER2-乳腺癌患者的临床病理特征、多组学事件及预后 | 数字病理学 | 乳腺癌 | 深度学习 | 深度学习模型 | 病理图像 | 421例HR+/HER2-乳腺癌患者 |