深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 32373 篇文献,本页显示第 15901 - 15920 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
15901 2025-03-01
FDoSR-Net: Frequency-Domain Informed Auto-Encoder Network for Arbitrary-Scale 3D Whole-Heart MRI Super-Resolution
2025-Jan-30, Bioengineering (Basel, Switzerland)
研究论文 本文旨在开发一种三维超分辨率网络,用于执行任意比例的三维全心磁共振成像超分辨率,同时保持精细的图像细节 提出了一种利用频域正则化训练的3D自编码器框架,能够在训练中保持精细图像细节,并实现任意比例的超分辨率 NA 开发一种能够执行任意比例三维全心磁共振成像超分辨率的网络 三维全心磁共振成像 计算机视觉 心血管疾病 NA 3D自编码器 三维磁共振成像 120个三维全心磁共振成像体积,使用四种不同的序列获取 NA NA NA NA
15902 2025-03-01
Anatomically Guided Deep Learning System for Right Internal Jugular Line (RIJL) Segmentation and Tip Localization in Chest X-Ray
2025-Jan-29, Life (Basel, Switzerland)
研究论文 本研究提出了一种结合解剖学标志分割、RIJL分割网络和后处理功能的深度学习系统,用于在胸部X光图像中准确分割右颈内静脉导管(RIJL)并定位其尖端 通过整合解剖学知识和空间推理,利用气管作为解剖学标志提取与RIJL最相关的子区域,从而提高了分割和尖端定位的准确性 NA 开发一种自动化深度学习系统,以减少临床医生在胸部X光图像中检查右颈内静脉导管(RIJL)放置的工作量 右颈内静脉导管(RIJL)在胸部X光图像中的分割和尖端定位 计算机视觉 NA 深度学习 nnU-Net 图像 NA NA NA NA NA
15903 2025-03-01
Deep Learning-Enhanced Portable Chemiluminescence Biosensor: 3D-Printed, Smartphone-Integrated Platform for Glucose Detection
2025-Jan-27, Bioengineering (Basel, Switzerland)
研究论文 本文介绍了一种新型便携式化学发光生物传感器平台,结合深度学习和智能手机集成,用于葡萄糖检测 该平台采用低成本蜡印微垫和3D打印黑盒,替代传统笨重设备,并通过深度学习模型显著提升检测性能 NA 开发一种成本效益高且选择性强的葡萄糖检测平台 葡萄糖 生物传感 NA 化学发光(CL)传感 Random Forest, SVM, InceptionV3, VGG16, ResNet-50 图像 600张实验化学发光图像,其中80%用于模型训练,20%用于测试 NA NA NA NA
15904 2025-03-01
CLTNet: A Hybrid Deep Learning Model for Motor Imagery Classification
2025-Jan-27, Brain sciences IF:2.7Q3
研究论文 本文提出了一种名为CLTNet的混合深度学习模型,用于改进基于脑电图(EEG)的运动想象(MI)分类 CLTNet模型创新性地结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和Transformer模块,以更全面地理解运动想象期间EEG信号的特征 NA 改进基于EEG的运动想象分类,以促进脑机接口(BCI)技术的应用 运动想象EEG信号 机器学习 NA NA CNN, LSTM, Transformer EEG信号 BCI IV 2a和BCI IV 2b数据集 NA NA NA NA
15905 2025-03-01
A Robust Method for Real Time Intraoperative 2D and Preoperative 3D X-Ray Image Registration Based on an Enhanced Swin Transformer Framework
2025-Jan-26, Bioengineering (Basel, Switzerland)
研究论文 本文提出了一种基于增强Swin Transformer框架的实时术中2D和术前3D X射线图像配准方法,用于图像引导手术中的病灶定位 采用双通道Swin Transformer特征提取器,结合注意力机制和特征金字塔,提高了2D X射线和3D CT图像配准的速度和精度 NA 提高图像引导手术中2D X射线和3D CT图像配准的准确性和效率 术中2D X射线图像和术前3D CT图像 计算机视觉 NA 深度学习 Swin Transformer 图像 来自开源数据集的三个不同感兴趣区域 NA NA NA NA
15906 2025-03-01
Predicting Epileptic Seizures Using EfficientNet-B0 and SVMs: A Deep Learning Methodology for EEG Analysis
2025-Jan-24, Bioengineering (Basel, Switzerland)
研究论文 本研究提出了一种结合EfficientNet-B0卷积神经网络和六种支持向量机(SVM)集成投票机制的框架,用于癫痫发作预测 该框架首次将EfficientNet-B0与SVM集成结合,利用归一化短时傅里叶变换(STFT)和通道相关性特征从EEG信号中提取频谱和空间信息,提高了预测的准确性和鲁棒性 研究仅在CHB-MIT数据集上进行了验证,未在其他数据集上测试其泛化能力 开发一种高效的癫痫发作预测方法,以改善癫痫患者的管理和干预时机 癫痫患者的EEG信号 机器学习 癫痫 短时傅里叶变换(STFT) EfficientNet-B0, SVM EEG信号 CHB-MIT数据集 NA NA NA NA
15907 2025-03-01
A Future Picture: A Review of Current Generative Adversarial Neural Networks in Vitreoretinal Pathologies and Their Future Potentials
2025-Jan-24, Biomedicines IF:3.9Q1
综述 本文回顾了当前生成对抗网络(GANs)在玻璃体视网膜病变中的应用及其未来潜力 探讨了GANs在眼科领域的应用,特别是其在提高诊断准确性、扩展成像技术能力及预测治疗反应方面的潜力 当前GAN模型在可靠性和准确性方面面临挑战 探索GANs在视网膜疾病诊断和治疗监测中的临床应用 玻璃体视网膜病变 计算机视觉 视网膜疾病 生成对抗网络(GANs) GAN 图像 NA NA NA NA NA
15908 2025-03-01
Segmentation of ADPKD Computed Tomography Images with Deep Learning Approach for Predicting Total Kidney Volume
2025-Jan-22, Biomedicines IF:3.9Q1
研究论文 本文提出了一种基于深度学习的框架,用于自动分割ADPKD患者的CT图像以预测总肾脏体积(TKV) 开发了一个逐步框架,能够稳健处理非增强CT(NCCT)和增强CT(CCT)图像,确保样本利用的平衡和跨模态的一致性表现 缺乏对CT模态变化的深入研究 通过自动分割ADPKD患者的CT图像来预测总肾脏体积(TKV) ADPKD患者的CT图像 计算机视觉 肾脏疾病 深度学习 SSD, Inception V2, DeepLab V3+ CT图像 NA NA NA NA NA
15909 2025-03-01
TSF-MDD: A Deep Learning Approach for Electroencephalography-Based Diagnosis of Major Depressive Disorder with Temporal-Spatial-Frequency Feature Fusion
2025-Jan-21, Bioengineering (Basel, Switzerland)
研究论文 本文提出了一种名为TSF-MDD的深度学习方法,用于基于脑电图(EEG)的重度抑郁症(MDD)诊断,通过融合时间、空间和频率域信息来提高诊断准确性和效率 TSF-MDD方法首次将时间、空间和频率域信息整合到一个四维表示中,并使用3D-CNN和CapsNet模型进行跨域特征提取,同时采用独立于受试者的数据划分策略以避免数据泄露 尽管TSF-MDD在Mumtaz2016数据集上表现出色,但其在其他数据集上的泛化能力仍需进一步验证 开发一种自动化诊断系统,以提高重度抑郁症的诊断准确性和效率 重度抑郁症(MDD)患者 机器学习 重度抑郁症 脑电图(EEG) 3D-CNN, CapsNet EEG信号 Mumtaz2016公共数据集 NA NA NA NA
15910 2025-03-01
Deep Learning-Based Drug Compounds Discovery for Gynecomastia
2025-Jan-21, Biomedicines IF:3.9Q1
研究论文 本研究利用基于深度学习的计算方法发现潜在的男性乳房发育症药物化合物 结合文本挖掘和人工智能在药物发现中的有效性,为男性乳房发育症提供新的治疗途径 需要进一步的实验验证和预测模型的优化以支持新药开发 发现男性乳房发育症的潜在药物化合物 男性乳房发育症相关基因和药物化合物 机器学习 男性乳房发育症 文本挖掘、生物过程探索、通路富集、蛋白质-蛋白质相互作用网络构建、药物-靶点相互作用分析 DeepPurpose 基因数据、药物数据 177个与男性乳房发育症相关的基因 NA NA NA NA
15911 2025-03-01
Artificial Intelligence in the Surgery-First Approach: Harnessing Deep Learning for Enhanced Condylar Reshaping Analysis: A Retrospective Study
2025-Jan-21, Life (Basel, Switzerland)
研究论文 本研究利用人工智能和深度学习技术,分析手术优先方法(SFA)与传统手术延迟方法(SLA)在正颌手术中的髁突行为,评估其效果 首次将深度学习和卷积神经网络(CNN)应用于髁突形态的快速、精确分析,显著减少了分割时间 研究为回顾性分析,样本量相对较小(77例患者),且仅在一家医院进行,可能影响结果的普遍性 评估手术优先方法(SFA)与传统手术延迟方法(SLA)在正颌手术中对髁突形态的影响 77名接受正颌手术的患者(18名SFA,59名SLA) 数字病理 NA 锥形束计算机断层扫描(CBCT) 卷积神经网络(CNN) 3D图像 77名患者(18名SFA,59名SLA) NA NA NA NA
15912 2025-03-01
Unifying fragmented perspectives with additive deep learning for high-dimensional models from partial faceted datasets
2025, NPJ biological physics and mechanics
研究论文 本文提出了一种机器学习方法,通过整合分面数据子集来重建系统的完整视图,使用条件分布进行建模 提出了一种结合多项式回归和神经网络模型的方法,能够从部分数据集中成功重建系统,并随着测量变量的增加提高预测准确性 方法仅在机械弹簧网络和8维生物网络的两个示例中进行了验证,尚未在更广泛的生物系统中测试 旨在通过整合分面数据子集,重建复杂生物系统的完整视图,以量化分子元素对生物功能的贡献 机械弹簧网络和涉及衰老标志物P53的8维生物网络 机器学习 NA 多项式回归和神经网络 多项式回归模型和神经网络模型 单细胞数据 NA NA NA NA NA
15913 2025-03-01
MAEMC-NET: a hybrid self-supervised learning method for predicting the malignancy of solitary pulmonary nodules from CT images
2025, Frontiers in medicine IF:3.1Q1
研究论文 本文提出了一种名为MAEMC-NET的深度学习模型,用于从CT图像中预测孤立性肺结节的恶性程度 MAEMC-NET结合了生成式(Masked AutoEncoder)和对比式(Momentum Contrast)自监督学习方法,以学习CT图像中孤立性结节的内部和相互间的表示 研究仅涉及494名患者,样本量相对较小 解决肺肉芽肿性结节(PGN)与实性肺腺癌(SLA)在CT形态特征上的相似性,提高术前诊断的准确性 孤立性肺结节 计算机视觉 肺癌 CT成像 MAEMC-NET(结合Masked AutoEncoder和Momentum Contrast) CT图像 494名患者 NA NA NA NA
15914 2025-03-01
MRpoxNet: An enhanced deep learning approach for early detection of monkeypox using modified ResNet50
2025 Jan-Dec, Digital health IF:2.9Q2
研究论文 本文介绍了一种增强的深度学习模型MRpoxNet,基于改进的ResNet50架构,用于从数字皮肤病变图像中早期检测猴痘 MRpoxNet通过扩展ResNet50的层数并引入额外的卷积、ReLU、dropout和批量归一化层,提高了诊断准确性和临床可靠性 未来需要进一步扩展数据集并增强模型对多样化临床场景的多模态适应性 开发一种高效的深度学习模型,用于早期检测猴痘 数字皮肤病变图像 计算机视觉 猴痘 深度学习 改进的ResNet50 图像 初始1156张图像,增强至6116张图像,分为猴痘、非猴痘和正常皮肤三类 NA NA NA NA
15915 2025-10-07
Serum Potassium Monitoring Using AI-Enabled Smartwatch Electrocardiograms
2024-Dec, JACC. Clinical electrophysiology
研究论文 开发了一种基于AI的心电图算法,通过智能手表心电图预测终末期肾病患者血清钾水平 首次利用智能手表单导联心电图数据开发深度学习模型预测血清钾水平,实现无创连续监测 研究主要针对终末期肾病患者,模型在其他人群中的适用性需要进一步验证 开发AI-ECG算法预测血清钾水平,实现高钾血症的远程监测 终末期肾病(ESRD)患者 医疗人工智能 肾脏疾病 心电图(ECG)监测 深度学习 心电图波形数据 训练集:152,508名患者的293,557份心电图;微调集:1,463名ESRD患者的4,337份心电图;验证集:40名ESRD患者的智能手表心电图 NA Kardio-Net AUC, 平均绝对误差(MAE) NA
15916 2025-10-07
Deep learning of structural MRI predicts fluid, crystallized, and general intelligence
2024-11-14, Scientific reports IF:3.8Q1
研究论文 本研究使用深度学习模型分析T1加权结构磁共振图像来预测个体的流体智力、晶体智力和一般智力 首次全面预测晶体智力和一般智力,而不仅限于流体智力;进行了432组实验系统比较不同模型和输入设置 样本量相对有限(850名受试者);模型复杂度增加未带来预测精度提升的原因未完全阐明 探索脑结构MRI是否能够预测个体智力水平 850名6-64岁健康及自闭症受试者 医学影像分析 神经发育障碍 T1加权结构磁共振成像 CNN 医学影像 850名受试者 NA 2D CNN, 3D CNN Pearson相关系数 NA
15917 2025-10-07
Prediction and design of transcriptional repressor domains with large-scale mutational scans and deep learning
2024-Sep-24, bioRxiv : the preprint server for biology
研究论文 本研究通过大规模突变扫描和深度学习模型预测和设计转录抑制结构域 开发了整合序列、结构和生化表征的深度学习模型TENet,能够准确预测抑制活性并指导合成调控蛋白的精确设计 模型在具有不同同源性的结构域之间的泛化能力仍需系统测试 研究序列变异如何影响转录抑制结构域的功能活性 人类细胞中50多个抑制结构域的115,000个变异序列 机器学习 Saethre-Chotzen综合征,Rett综合征 高通量突变扫描,深度学习 深度学习 序列数据,结构数据,生化数据 115,000个变异序列 NA TENet NA NA
15918 2025-10-07
Discovery and characterization of novel FGFR1 inhibitors in triple-negative breast cancer via hybrid virtual screening and molecular dynamics simulations
2024-09, Bioorganic chemistry IF:4.5Q1
研究论文 本研究通过混合虚拟筛选和分子动力学模拟发现并表征了新型FGFR1抑制剂,用于三阴性乳腺癌治疗 开发了结合深度学习与分子对接的混合虚拟筛选方法,发现了具有纳摩尔级抑制活性的新型化合物 研究主要基于计算机模拟和体外实验,尚未进行体内动物模型验证 开发针对三阴性乳腺癌FGFR1靶点的有效抑制剂 FGFR1蛋白及其V561M突变体,三阴性乳腺癌细胞系 计算生物学 三阴性乳腺癌 虚拟筛选,分子对接,分子动力学模拟,HTRF生物测定 深度学习,分子对接 分子结构数据,生物活性数据 NA KarmaDock, Schrödinger NA IC50值 NA
15919 2025-10-07
Simple models vs. deep learning in detecting low ejection fraction from the electrocardiogram
2024-Jul, European heart journal. Digital health
研究论文 比较简单模型与深度学习模型在心电图检测低射血分数方面的性能 证明基于标准心电图测量的简单模型可以达到与深度学习模型相近的性能,且更易于临床部署和解释 研究基于观察性数据集,需要进一步验证在更广泛人群中的适用性 评估简单模型与深度学习模型在检测左心室收缩功能障碍方面的准确性和可移植性 心电图波形和经胸超声心动图匹配数据 机器学习 心血管疾病 心电图测量,超声心动图 随机森林, 逻辑回归, 深度学习 心电图波形,测量数据 40,994对匹配的心电图和超声心动图(斯坦福大学医学中心),外加哥伦比亚医学中心和英国生物银行的外部验证数据 NA NA AUC NA
15920 2025-10-07
Fluorescence excitation-scanning hyperspectral imaging with scalable 2D-3D deep learning framework for colorectal cancer detection
2024-06-26, Scientific reports IF:3.8Q1
研究论文 开发用于结直肠癌检测的荧光激发扫描高光谱成像与可扩展深度学习框架 提出新型荧光激发扫描高光谱成像方法,结合可调节速度/性能权衡的端到端AI框架,提供AI决策过程的可解释性可视化 高维数据带来的处理、解释和分类挑战 提升结直肠癌病变检测的准确性和实时分析能力 结直肠癌组织样本 计算机视觉 结直肠癌 荧光激发扫描高光谱成像 深度学习 高光谱图像 NA NA NA 分类准确率 NA
回到顶部