本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1581 | 2025-06-06 |
Deep learning-based optical coherence tomography and retinal images for detection of diabetic retinopathy: a systematic and meta analysis
2025, Frontiers in endocrinology
IF:3.9Q2
DOI:10.3389/fendo.2025.1485311
PMID:40171193
|
meta-analysis | 本文通过系统综述和荟萃分析评估了深度学习算法在光学相干断层扫描(OCT)和视网膜图像中检测糖尿病视网膜病变(DR)的有效性 | 首次对深度学习在OCT和视网膜图像中检测DR的效果进行了全面的荟萃分析 | 数据集标准化不足,模型可解释性有待提高,且需在多样化人群中进一步验证性能 | 评估深度学习算法在糖尿病视网膜病变检测中的准确性和可靠性 | 光学相干断层扫描(OCT)和视网膜图像 | digital pathology | diabetic retinopathy | deep learning | NA | image | 188268张视网膜图像和OCT扫描 |
1582 | 2025-06-06 |
Ground-truth-free deep learning approach for accelerated quantitative parameter mapping with memory efficient learning
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0324496
PMID:40455714
|
研究论文 | 本研究评估了结合内存高效学习(MEL)的自监督学习(SSL)和零样本自监督学习(ZSSSL)框架,以加速定量MRI(qMRI)的图像重建 | 提出了不依赖全采样数据的自监督学习和零样本自监督学习方法,并结合内存高效学习技术降低GPU内存需求 | 在高度加速因子条件下,SSL和ZSSSL的性能略逊于监督学习(SL) | 加速定量MRI图像重建过程并降低计算资源需求 | 定量MRI图像重建 | 医学影像分析 | NA | 定量MRI(qMRI), 自监督学习(SSL), 零样本自监督学习(ZSSSL) | 深度学习(DL) | MRI图像 | 三个实验(2D T2映射/MSME, 3D T1映射/VFA-SPGR, 3D T2映射/DESS) |
1583 | 2025-06-06 |
Utility of artificial intelligence-based conversation voice analysis for detecting cognitive decline
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0325177
PMID:40455724
|
研究论文 | 本研究开发了一种基于人工智能的对话语音分析模型,用于检测认知衰退 | 利用短对话语音样本通过AI模型检测认知衰退,无需专业环境或设备 | 样本量较小(263名患者),且仅基于Mini-Mental State Examination分数进行标签 | 开发一种便捷的认知衰退筛查工具 | 认知衰退患者和认知正常人群 | 自然语言处理 | 老年疾病 | 机器学习 | 全耦合神经网络 | 语音 | 263名患者的语音样本,其中20个样本用于准确性评估 |
1584 | 2025-06-06 |
Overlapping point cloud registration algorithm based on KNN and the channel attention mechanism
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0325261
PMID:40455723
|
研究论文 | 提出了一种基于KNN和通道注意力机制的重叠点云配准算法,显著提高了重叠区域的特征提取和匹配能力 | 结合KNN算法和通道注意力机制(CAM),设计了有效性评分网络,提高了配准精度和系统鲁棒性 | 未提及算法在实时性方面的表现 | 提高重叠点云区域的特征提取和匹配能力,构建高精度环境模型 | 三维点云数据 | 计算机视觉 | NA | KNN算法,通道注意力机制(CAM) | 有效性评分网络 | 三维点云数据 | ModelNet40数据集和Stanford数据集 |
1585 | 2025-06-06 |
A novel spectral analysis-based grading system for gastrointestinal activity
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0323440
PMID:40455773
|
研究论文 | 本文介绍了一种基于频谱分析的新型胃肠道活动分级系统,用于客观评估胃肠动力 | 提出了一种创新的无监督分级系统,通过频谱特征分析肠鸣音来评估胃肠动力,避免了传统方法依赖个人判断和大规模标注数据集的问题 | 虽然验证了方法的可靠性,但仍需进一步研究以确认其在更广泛临床环境中的适用性 | 开发一种客观评估胃肠动力的方法,辅助医生量化胃肠道活动 | 肠鸣音(由消化气体和液体在蠕动过程中产生的声音信号) | 数字病理 | 胃肠道疾病 | 频谱特征分析 | 无监督学习 | 音频 | NA |
1586 | 2025-06-06 |
An efficient non-parametric feature calibration method for few-shot plant disease classification
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1541982
PMID:40458225
|
research paper | 提出一种基于特征适应评分(FAS)度量的方法,用于少样本植物病害分类 | 利用FAS评分与测试准确率的严格正相关关系,无需训练网络即可确定适用于少样本植物病害分类的Swin-Transformer V2-F6网络结构,并设计了PDFC算法进行特征校准 | NA | 解决植物病害图像数据不足的问题,提高少样本植物病害分类的准确率 | 植物病害图像 | computer vision | plant disease | few-shot learning | Swin-Transformer V2 | image | PlantVillage数据集及其他数据集 |
1587 | 2025-06-06 |
Ventricular volume adjustment of brain regions depicts brain changes associated with HIV infection and aging better than intracranial volume adjustment
2025, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2025.1516168
PMID:40458466
|
research paper | 该研究探讨了在分析HIV感染和衰老相关的大脑结构变化时,采用侧脑室(LV)体积调整比颅内体积(ICV)调整更能揭示潜在的萎缩模式 | 提出了使用侧脑室体积调整作为新的分析方法,以更准确地识别HIV感染和衰老相关的大脑萎缩模式,尤其是在HIV相关神经认知障碍(HAND)的研究中 | 研究仅基于MRI T1图像数据,未考虑其他可能的神经影像学或临床数据 | 比较不同体积调整策略在识别HIV感染和衰老相关大脑萎缩模式中的效果 | HIV感染者和健康对照者的大脑结构变化 | digital pathology | HIV感染 | MRI T1成像 | deep learning models | image | NA |
1588 | 2025-06-06 |
Artificial Intelligence and Radiomics Applied to Prostate Cancer Bone Metastasis Imaging: A Review
2024-Dec, iRadiology
DOI:10.1002/ird3.99
PMID:40453356
|
review | 本文综述了人工智能和放射组学在前列腺癌骨转移影像分析中的应用 | 综合分析了放射组学、机器学习和深度学习在前列腺癌骨转移影像分析中的应用,并提出了未来研究方向 | 文献中缺乏对各种方法的详细分析和未来方向的深入探讨 | 探讨定量方法在前列腺癌骨转移影像分析中的应用及其临床意义 | 前列腺癌骨转移的影像数据 | digital pathology | prostate cancer | radiomics, machine learning, deep learning | NA | image | NA |
1589 | 2025-06-06 |
Leveraging Artificial Intelligence and Data Science for Integration of Social Determinants of Health in Emergency Medicine: Scoping Review
2024-10-30, JMIR medical informatics
IF:3.1Q2
DOI:10.2196/57124
PMID:39475815
|
综述 | 本文探讨了人工智能和数据科学在急诊医学中整合社会健康决定因素(SDOH)数据的潜力和应用 | 首次系统性地评估了AI和数据科学在急诊医学中SDOH数据整合的应用,突出了机器学习和自然语言处理技术的优势 | 研究仍处于初级阶段,纳入的研究数量有限(26篇),且主要集中在急诊科患者 | 探索AI和数据科学在急诊医学中SDOH数据建模、提取和整合的应用潜力 | 急诊科患者及其SDOH数据 | 医疗信息学 | 急诊医学相关疾病(如脓毒症、急性心肌梗死、哮喘等) | 机器学习(ML)、自然语言处理(NLP)、深度学习、模式匹配 | NLP模型(包括基于规则的NLP、深度学习模型) | 文本数据(临床记录等) | 26项符合条件的研究(其中9项专门针对急诊患者) |
1590 | 2025-06-06 |
DEEP LEARNING FOR AUTOMATIC PREDICTION OF EARLY ACTIVATION OF TREATMENT-NAIVE NONEXUDATIVE MACULAR NEOVASCULARIZATIONS IN AGE-RELATED MACULAR DEGENERATION
2024-08-01, Retina (Philadelphia, Pa.)
DOI:10.1097/IAE.0000000000004106
PMID:38489765
|
research paper | 本研究开发了一种基于光学相干断层扫描(OCT)和OCT血管成像(OCTA)的深度学习分类器,用于预测年龄相关性黄斑变性患者中非渗出性黄斑新生血管的早期渗出风险 | 首次结合OCT和OCTA图像分析,使用多种CNN模型(ResNet-101、Inception-ResNet-v2和DenseNet-201)进行预测,并通过多数投票和软投票技术提升性能 | 样本量相对较小(89例患者),且为回顾性研究 | 开发AI工具预测非渗出性黄斑新生血管的早期渗出风险 | 年龄相关性黄斑变性患者的非渗出性黄斑新生血管 | digital pathology | age-related macular degeneration | OCT, OCTA | CNN (ResNet-101, Inception-ResNet-v2, DenseNet-201) | image | 89例患者(35例渗出组,54例非渗出组) |
1591 | 2025-06-06 |
AUTOMATED DETECTION OF VITRITIS USING ULTRAWIDE-FIELD FUNDUS PHOTOGRAPHS AND DEEP LEARNING
2024-06-01, Retina (Philadelphia, Pa.)
DOI:10.1097/IAE.0000000000004049
PMID:38261816
|
研究论文 | 本研究开发了一种基于深度学习的算法,用于自动检测和分级超广角眼底照片中的玻璃体炎 | 首次利用超广角眼底成像和深度学习技术进行玻璃体炎的自动检测和分级 | 六分类玻璃体炎分级的准确性有限(0.61),可能需要更大样本量来提高模型性能 | 评估深度学习算法在超广角成像上自动检测和分级玻璃体炎的性能 | 葡萄膜炎患者的超广角眼底视网膜照片 | 数字病理 | 葡萄膜炎 | 超广角眼底成像 | DenseNet121 CNN | 图像 | 1181张图像 |
1592 | 2025-06-06 |
OMERACT validation of a deep learning algorithm for automated absolute quantification of knee joint effusion versus manual semi-quantitative assessment
2024-06, Seminars in arthritis and rheumatism
IF:4.6Q1
DOI:10.1016/j.semarthrit.2024.152420
PMID:38422727
|
研究论文 | 本文通过OMERACT过滤器评估深度学习算法在膝关节积液自动绝对量化中的应用 | 首次使用深度学习算法对膝关节积液进行自动绝对量化,并与人工半定量评估进行对比 | 需要进一步评估算法的区分能力和与临床结果的一致性,以完全满足OMERACT过滤器的要求 | 评估深度学习算法在膝关节积液量化中的有效性 | 53名OAI受试者的膝关节MRI数据 | 数字病理学 | 骨关节炎 | 深度学习 | DL算法 | MRI图像 | 53名受试者 |
1593 | 2025-06-06 |
OCTess: AN OPTICAL CHARACTER RECOGNITION ALGORITHM FOR AUTOMATED DATA EXTRACTION OF SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY REPORTS
2024-04-01, Retina (Philadelphia, Pa.)
DOI:10.1097/IAE.0000000000003990
PMID:37948741
|
研究论文 | 开发了一种名为OCTess的光学字符识别算法,用于从Cirrus SD-OCT黄斑立方体报告中自动提取数据 | 结合了Tesseract OCR库和LSTM深度学习技术,实现了近乎完美的数据提取准确率,且在效率上超越了人工操作 | 研究仅基于单中心数据库,可能限制了算法的泛化能力 | 开发自动化工具以减少人工提取SD-OCT报告的时间和资源消耗 | SD-OCT单眼黄斑立方体报告 | 计算机视觉 | 眼科疾病 | 光学字符识别(OCR),深度学习 | LSTM | 图像 | 675份SD-OCT报告(训练集125份,测试集550份) |
1594 | 2025-06-06 |
Dimensionality Reduction and Nearest Neighbors for Improving Out-of-Distribution Detection in Medical Image Segmentation
2024, The journal of machine learning for biomedical imaging
DOI:10.59275/j.melba.2024-g93a
PMID:40453064
|
research paper | 该研究通过应用马氏距离和k近邻距离方法,提高了医学图像分割中分布外数据的检测性能 | 提出使用降维技术和非参数k近邻距离方法改进分布外检测,显著提升了可扩展性和性能 | 研究仅针对肝脏分割任务进行了验证,未在其他器官或模态上进行测试 | 提高医学图像分割模型对分布外数据的检测能力 | T1加权磁共振成像和计算机断层扫描的肝脏分割 | digital pathology | liver cancer | principal component analysis, uniform manifold approximation and projection | Swin UNETR, nnU-net | image | NA |
1595 | 2025-06-06 |
Assessing Trustworthy AI in Times of COVID-19: Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients
2022-Dec, IEEE transactions on technology and society
DOI:10.1109/TTS.2022.3195114
PMID:36573115
|
研究论文 | 本文展示了如何在医疗保健领域实践欧盟高级专家组的可信AI指南,并探讨了COVID-19疫情期间'可信AI'的含义 | 应用Z-Inspection®方法进行后验自我评估,以评估AI系统在COVID-19疫情期间的可信度 | 研究局限于疫情期间在意大利一家诊所的实验性部署,可能不具有广泛代表性 | 评估AI系统在预测COVID-19患者肺部损伤程度方面的可信度 | COVID-19患者的胸部X光片 | 数字病理学 | COVID-19 | 深度学习 | NA | 医学影像 | NA |
1596 | 2025-06-05 |
Accelerating high-concentration monoclonal antibody development with large-scale viscosity data and ensemble deep learning
2025-Dec, mAbs
IF:5.6Q1
DOI:10.1080/19420862.2025.2483944
PMID:40170162
|
research paper | 该研究通过大规模粘度数据和集成深度学习加速高浓度单克隆抗体的开发 | 开发了DeepViscosity模型,包含102个集成人工神经网络模型,用于分类低粘度(≤20 cP)和高粘度(>20 cP)的单克隆抗体,准确率超过其他预测方法 | 模型训练数据仅包含229个单克隆抗体的粘度数据,可能影响模型的泛化能力 | 开发预测模型以筛选高浓度单克隆抗体,改善其制造和配方特性 | 229个单克隆抗体的粘度数据 | machine learning | NA | DeepSP模型 | ensemble artificial neural network | sequence-based features | 229个单克隆抗体 |
1597 | 2025-06-05 |
Enhancing Functional Protein Design Using Heuristic Optimization and Deep Learning for Anti-Inflammatory and Gene Therapy Applications
2025-Jul, Proteins
IF:3.2Q2
DOI:10.1002/prot.26810
PMID:39985803
|
研究论文 | 本研究开发了一种启发式优化方法,用于增强蛋白质的关键功能特性,如溶解性、灵活性和稳定性,同时保持蛋白质的结构完整性 | 结合启发式优化和深度学习,专注于蛋白质的功能特性设计,特别适用于抗炎和基因治疗应用 | 未提及具体实验验证的功能性蛋白质数量或实际应用效果 | 提高功能性蛋白质设计的效率和效果,减少实验室需求 | 蛋白质序列设计,特别是具有抗炎特性和用于基因治疗的蛋白质 | 机器学习 | NA | 启发式优化方法、深度学习、遗传算法 | NA | 蛋白质序列 | NA |
1598 | 2025-06-05 |
Gesture recognition from surface electromyography signals based on the SE-DenseNet network
2025-Jun-26, Biomedizinische Technik. Biomedical engineering
DOI:10.1515/bmt-2024-0282
PMID:39873377
|
研究论文 | 本文提出了一种基于SE-DenseNet网络的手势识别方法,用于从表面肌电信号中识别手势 | 融合了Squeeze-and-Excitation Networks (SE)和DenseNet,在DenseBlock和Transition之间插入注意力机制,以提高特征表示能力并有效解决梯度消失问题 | 现有手势识别算法在全局特征捕获、模型计算复杂度和泛化能力方面仍需进一步改进 | 提供更自然、方便和个性化的人机交互,特别是在康复技术领域 | 表面肌电信号(sEMG) | 机器学习 | NA | 深度学习 | SE-DenseNet | 肌电信号 | NinaPro DB2和DB4数据集 |
1599 | 2025-06-05 |
A ViTUNeT-based model using YOLOv8 for efficient LVNC diagnosis and automatic cleaning of dataset
2025-Jun-04, Journal of integrative bioinformatics
IF:1.5Q3
DOI:10.1515/jib-2024-0048
PMID:40460443
|
研究论文 | 提出了一种基于ViTUNeT和YOLOv8的模型,用于左心室非致密化(LVNC)的高效诊断和数据集自动清理 | 结合U-Net和Vision Transformers的ViTUNeT架构,以及使用YOLOv8模型进行心室检测和数据集清理 | 数据集质量限制了进一步的准确性提升 | 改进心脏图像分析和分割方法 | 左心室非致密化患者和健康个体 | 数字病理学 | 心血管疾病 | 深度学习 | ViTUNeT, YOLOv8 | MRI图像 | 新增Titin心肌病患者和健康个体的数据集 |
1600 | 2025-06-05 |
Applications of Artificial Intelligence (AI) for Diagnosis of Periodontal/Peri-Implant Diseases: A Narrative Review
2025-Jun-04, Journal of oral rehabilitation
IF:3.1Q1
DOI:10.1111/joor.14045
PMID:40464289
|
综述 | 本文综述了人工智能(AI)在牙周病/种植体周围疾病诊断中的应用现状 | 探讨了AI在牙周病诊断中的多种应用,包括疾病分期、严重程度评估及解剖结构定位,并比较了AI模型与牙医的诊断效果 | 仅进行了叙述性综述,未进行系统性分析或荟萃分析,可能遗漏部分研究 | 总结AI在牙周病/种植体周围疾病诊断和风险预测中的应用证据 | 牙周病和种植体周围疾病 | 数字病理 | 牙周病 | AI、ANN、CNN、ML、DL、DNN | CNN、DNN | 患者相关数据、疾病症状、免疫生物标志物、微生物图谱、影像数据 | NA |