本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16201 | 2024-09-21 |
Non-invasive diagnosis of pancreatic steatosis with ultrasound images using deep learning network
2024-Sep-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e37580
PMID:39296003
|
研究论文 | 本研究旨在验证胰腺脂肪变性(PS)是否为2型糖尿病(T2DM)的独立风险因素,并开发和验证了一种基于超声图像的深度学习模型用于PS的诊断 | 本研究开发了一种深度学习模型,显著提高了传统超声对PS检测的诊断准确性 | 本研究为回顾性研究,样本量相对较小,未来需要更大规模的前瞻性研究进一步验证 | 验证胰腺脂肪变性是否为2型糖尿病的独立风险因素,并开发一种新的诊断方法 | 胰腺脂肪变性和2型糖尿病 | 计算机视觉 | 糖尿病 | 深度学习 | 深度学习模型 | 图像 | 139名患者 |
16202 | 2024-09-21 |
Arabic dialect identification in social media: A hybrid model with transformer models and BiLSTM
2024-Sep-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e36280
PMID:39296033
|
研究论文 | 本文提出了一种结合Transformer模型和BiLSTM的混合模型,用于阿拉伯方言在社交媒体中的识别 | 引入了包含121,289条用户生成评论的新数据集,并提出了两种混合模型:BiLSTM与CAMeLBERT结合,以及BiLSTM与AlBERT结合 | NA | 解决阿拉伯方言在社交媒体中的识别问题 | 阿拉伯方言的识别 | 自然语言处理 | NA | NA | BiLSTM | 文本 | 121,289条用户生成评论,涵盖埃及、约旦、海湾和也门四种主要阿拉伯方言 |
16203 | 2024-09-21 |
Intelligent system based on multiple networks for accurate ovarian tumor semantic segmentation
2024-Sep-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e37386
PMID:39296061
|
研究论文 | 本文提出了一种基于多网络组合的智能系统,用于卵巢肿瘤的语义分割 | 通过结合不同的卷积神经网络和自定义组合算法,实现了更准确的卵巢肿瘤分割 | 目前仅使用了五个DeepLab-V3+网络,未来可以扩展到更强大的深度学习模型 | 设计更准确的医疗支持系统,以辅助医疗人员进行高效的卵巢肿瘤诊断 | 卵巢肿瘤,包括良性和恶性肿瘤 | 计算机视觉 | 卵巢癌 | 卷积神经网络 | DeepLab-V3+ | 图像 | 未明确提及具体样本数量 |
16204 | 2024-09-21 |
MobileNet-V2 /IFHO model for Accurate Detection of early-stage diabetic retinopathy
2024-Sep-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e37293
PMID:39296185
|
研究论文 | 提出了一种新的策略,通过结合MobileNet-V2深度学习网络和改进的Fire Hawk优化器(IFHO)来提高糖尿病视网膜病变的检测准确性 | 结合了MobileNet-V2和IFHO优化器,优化了特征选择过程,提高了检测的准确性和效率 | 需要在大规模数据集上进行进一步验证和测试,以验证模型在实际临床场景中的有效性和鲁棒性 | 提高糖尿病视网膜病变的早期检测准确性 | 糖尿病视网膜病变 | 计算机视觉 | 眼科疾病 | 深度学习 | MobileNet-V2 | 图像 | 使用了Diabetic Retinopathy 2015数据集 |
16205 | 2024-09-21 |
Detection of real-time deep fakes and face forgery in video conferencing employing generative adversarial networks
2024-Sep-15, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2024.e37163
PMID:39296212
|
研究论文 | 本文提出了一种基于深度条件生成对抗网络(CED-DCGAN)的紧凑集成判别器架构,用于实时检测视频会议中的深度伪造和人脸伪造 | 采用了一种独特的主动取证策略,通过紧凑集成判别器架构来识别高保真度的深度伪造视频 | NA | 开发一种能够实时检测视频会议中深度伪造和人脸伪造的方法 | 视频会议中的深度伪造和人脸伪造 | 计算机视觉 | NA | 生成对抗网络(GAN) | 深度条件生成对抗网络(DCGAN) | 视频 | 使用公开数据集进行实验 |
16206 | 2024-09-21 |
Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study
2024-Sep-03, Journal for immunotherapy of cancer
IF:10.3Q1
DOI:10.1136/jitc-2024-009348
PMID:39231545
|
研究论文 | 本研究利用多模态CT和深度学习技术,构建了一个非侵入性的生物标志物模型,用于预测非小细胞肺癌在接受新辅助免疫化疗后的病理完全反应 | 本研究首次利用多模态CT和深度学习技术,构建了一个非侵入性的生物标志物模型,用于预测非小细胞肺癌在接受新辅助免疫化疗后的病理完全反应 | 本研究仅在特定时间段内的多中心数据上进行了验证,未来需要在更多样本和更广泛的数据集上进行验证 | 开发一种非侵入性的生物标志物,用于预测非小细胞肺癌在接受新辅助免疫化疗后的病理完全反应 | 非小细胞肺癌患者在接受新辅助免疫化疗后的病理完全反应 | 计算机视觉 | 肺癌 | 深度学习 | CNN | 图像 | 训练和验证数据集包含113名患者,测试数据集包含112名患者 |
16207 | 2024-09-21 |
Spatial host-microbiome sequencing reveals niches in the mouse gut
2024-Sep, Nature biotechnology
IF:33.1Q1
DOI:10.1038/s41587-023-01988-1
PMID:37985876
|
研究论文 | 本文介绍了一种名为空间宿主-微生物组测序(SHM-seq)的新方法,用于捕获小鼠肠道组织中的组织病理学、多聚腺苷酸RNA和细菌16S序列 | SHM-seq方法通过修改空间条码玻璃表面,实现了宿主转录本和16S细菌核糖体RNA的超变区的同时捕获 | NA | 研究宿主-微生物组在健康和疾病中的相互作用 | 小鼠肠道组织中的细胞和微生物网络 | NA | NA | 空间宿主-微生物组测序(SHM-seq) | 深度学习 | 组织病理学、多聚腺苷酸RNA、细菌16S序列 | 小鼠肠道组织样本 |
16208 | 2024-09-21 |
Are deep learning classification results obtained on CT scans fair and interpretable?
2024-Sep, Physical and engineering sciences in medicine
IF:2.4Q2
DOI:10.1007/s13246-024-01419-8
PMID:38573489
|
研究论文 | 本文探讨了在CT扫描上使用深度学习进行分类时,结果是否公平且可解释 | 提出了一种严格的病人级别分离训练方法,以提高模型的实际可用性和解释性 | 未提及具体的技术细节或实验结果,仅提出了一个理论上的改进方向 | 探讨深度学习在医学图像分类中的公平性和可解释性问题 | CT扫描图像和肺结节分类 | 计算机视觉 | 肺部疾病 | 深度学习 | 深度神经网络 | 图像 | NA |
16209 | 2024-09-21 |
Pretraining of 3D image segmentation models for retinal OCT using denoising-based self-supervised learning
2024-Sep-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.524603
PMID:39296384
|
研究论文 | 本文探讨了利用基于图像恢复技术的3D自监督学习来预训练3D图像分割模型,以提高视网膜OCT图像的分割性能 | 本文提出了基于图像恢复和去噪的3D自监督学习方法,用于预训练3D网络,从而减少对分割标注的依赖 | 本文未提及具体的局限性 | 提高视网膜OCT图像分割的自动化程度和性能 | 视网膜OCT图像中的生物标志物分割 | 计算机视觉 | NA | 自监督学习 | U-Net | 3D图像 | 使用了大量3D OCT数据集进行预训练,并在两个具有挑战性的液体分割数据集上进行微调 |
16210 | 2024-09-21 |
High-resolution in vivo 4D-OCT fish-eye imaging using 3D-UNet with multi-level residue decoder
2024-Sep-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.532258
PMID:39296392
|
研究论文 | 本文介绍了一种基于3D-UNet和多级残差解码器的高分辨率4D-OCT鱼眼成像系统 | 提出了一种基于深度学习的实时4D-OCT系统,能够重建近无畸变的体图像,并通过多级信息融合加速收敛和提高精度 | NA | 解决3D-OCT成像中的运动伪影问题,实现高分辨率实时成像 | 生物组织的高分辨率体成像 | 计算机视觉 | NA | 光学相干断层扫描(OCT) | 卷积神经网络(CNN) | 图像 | NA |
16211 | 2024-09-21 |
Fluorescence diffuse optical monitoring of bioreactors: a hybrid deep learning and model-based approach for tomography
2024-Sep-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.529884
PMID:39296388
|
研究论文 | 本文提出了一种混合深度学习和模型优化方法,用于生物反应器的荧光扩散光学层析成像监测 | 通过结合经典模型优化和神经网络,提出了一种改进的荧光扩散光学层析成像方法,显著提高了在噪声条件下的重建精度 | NA | 提高生物反应器中细胞状态监测的准确性 | 生物反应器中的细胞状态 | 计算机视觉 | NA | 荧光扩散光学层析成像(fDOT) | 神经网络 | 图像 | 模拟和实际实验数据 |
16212 | 2024-09-21 |
Deep learning techniques for Alzheimer's disease detection in 3D imaging: A systematic review
2024-Sep, Health science reports
IF:2.1Q3
DOI:10.1002/hsr2.70025
PMID:39296636
|
综述 | 本文系统回顾了深度学习技术在阿尔茨海默病3D影像检测中的应用 | 本文评估了深度学习方法在阿尔茨海默病检测中的当前状态、效率和潜在改进 | 本文主要集中在理论模型和实际实施问题的讨论上 | 评估深度学习方法在阿尔茨海默病3D影像检测中的应用现状和潜在改进 | 阿尔茨海默病的3D影像数据 | 计算机视觉 | 阿尔茨海默病 | 深度学习 | 卷积神经网络(CNN) | 3D影像 | 87篇文章,其中31篇讨论模型和理论,56篇讨论实际实施问题 |
16213 | 2024-09-21 |
A deep learning model for personalized intra-arterial therapy planning in unresectable hepatocellular carcinoma: a multicenter retrospective study
2024-Sep, EClinicalMedicine
IF:9.6Q1
DOI:10.1016/j.eclinm.2024.102808
PMID:39296944
|
研究论文 | 本文提出了一种基于深度学习的个性化肝动脉内治疗计划模型,用于不可切除的肝细胞癌患者 | 本文创新性地使用SELECTION模型和ATOM模型,通过生存评分来优化不可切除肝细胞癌患者的治疗选择 | 本文的局限性在于其为回顾性多中心研究,且依赖于特定的治疗方式和数据集 | 研究目的是开发一种基于人工智能的个性化治疗计划模型,以提高不可切除肝细胞癌患者的治疗效果 | 研究对象为1725名接受过预手术CECT扫描的不可切除肝细胞癌患者 | 机器学习 | 肝癌 | 深度学习 | Transformer | 图像 | 1725名患者 |
16214 | 2024-09-21 |
Deep learning model utilizing clinical data alone outperforms image-based model for hernia recurrence following abdominal wall reconstruction with long-term follow up
2024-Jul, Surgical endoscopy
DOI:10.1007/s00464-024-10980-y
PMID:38862826
|
研究论文 | 本研究探讨了利用临床数据而非影像数据构建的深度学习模型在预测腹壁重建后疝复发方面的表现 | 首次比较了仅使用临床数据和影像数据的深度学习模型在预测疝复发方面的表现,发现临床数据模型优于影像数据模型 | 所有模型在预测疝复发方面的表现均不佳,需要进一步研究以提高预测能力 | 评估深度学习模型在预测腹壁重建后疝复发方面的表现,并探讨是否结合临床数据能提高预测能力 | 腹壁重建后疝复发的预测 | 机器学习 | NA | 深度学习 | 深度学习模型 | 影像数据和临床数据 | 190名腹壁重建患者 |
16215 | 2024-09-21 |
Surgical optomics: hyperspectral imaging and deep learning towards precision intraoperative automatic tissue recognition-results from the EX-MACHYNA trial
2024-Jul, Surgical endoscopy
DOI:10.1007/s00464-024-10880-1
PMID:38789623
|
研究论文 | 本研究开发了一种基于高光谱成像(HSI)和深度学习的自动腹部组织识别系统,并在前瞻性双中心设置中使用人类数据进行了验证 | 首次将高光谱成像与机器学习结合,用于手术中的自动组织识别,并提出了“手术光组学”这一新概念 | 需要进一步研究以量化高光谱成像的临床价值 | 开发基于高光谱成像的自动腹部组织识别系统,并验证其在手术中的应用 | 腹部手术中的组织识别 | 计算机视觉 | NA | 高光谱成像(HSI) | 卷积神经网络(CNN) | 图像 | 169名患者,其中73名来自斯特拉斯堡,96名来自维罗纳 |
16216 | 2024-09-21 |
Multi-scale spatiotemporal attention network for neuron based motor imagery EEG classification
2024-06, Journal of neuroscience methods
IF:2.7Q3
DOI:10.1016/j.jneumeth.2024.110128
PMID:38554787
|
研究论文 | 本文提出了一种基于多尺度时空自注意力机制的网络模型,用于分类基于运动想象任务的脑电信号 | 该模型利用注意力机制自动分配权重,选择与运动活动相关的通道,并使用多尺度时间卷积网络层提取时间域特征信息 | NA | 开发和训练一个能够有效提取运动想象脑电数据特征的网络模型 | 基于运动想象任务的脑电信号 | 机器学习 | NA | 脑电图 (EEG) | 自注意力网络 (SA) | 脑电信号 | 使用了BCI竞赛数据集IV-2a、IV-2b和HGD,分别包含79.26%、85.90%和96.96%的准确率 |
16217 | 2024-09-21 |
A robust multi-branch multi-attention-mechanism EEGNet for motor imagery BCI decoding
2024-05, Journal of neuroscience methods
IF:2.7Q3
DOI:10.1016/j.jneumeth.2024.110108
PMID:38458260
|
研究论文 | 本文提出了一种多分支多注意力机制的EEGNet模型(MBMANet),用于运动想象脑机接口的鲁棒解码 | 本文创新性地结合了多分支和多注意力机制,使模型能够自适应地学习不同的EEG特征,从而提高了解码的鲁棒性 | NA | 研究目的是提高基于运动想象的脑机接口技术的鲁棒性和实用性 | 研究对象是运动想象脑机接口中的EEG信号解码 | 机器学习 | NA | 深度学习 | CNN | EEG信号 | 9名受试者 |
16218 | 2024-09-21 |
Scalable Surveillance of E-Cigarette Products on Instagram and TikTok Using Computer Vision
2024-04-22, Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco
IF:3.0Q2
DOI:10.1093/ntr/ntad224
PMID:37947283
|
研究论文 | 开发了一种基于计算机视觉的模型,用于在Instagram和TikTok上识别电子烟产品 | 首次使用图像为基础的计算机视觉模型来识别社交媒体中的电子烟产品 | 模型在某些对象类别上的准确性仍有提升空间 | 开发和评估一种用于社交媒体图像和视频中电子烟产品检测的计算机视觉模型 | Instagram和TikTok上的电子烟相关内容 | 计算机视觉 | NA | 深度学习 | DyHead对象检测模型 | 图像和视频 | 6999张Instagram图片和14072段TikTok视频(共10276485帧) |
16219 | 2024-09-21 |
Digital health technologies for high-risk pregnancy management: three case studies using Digilego framework
2024-Apr, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooae022
PMID:38455839
|
研究论文 | 本文介绍了利用Digilego框架开发的三种数字健康技术,用于高危妊娠管理 | 本文的创新点在于利用社交计算、数据科学和数字健康技术开发了一系列数字产品,以支持高危妊娠管理 | 本文的局限性在于初步测试的样本量较小,未来需要进一步的实施和测试 | 研究目的是开发和评估数字健康技术,以支持高危妊娠管理 | 研究对象包括妊娠糖尿病、高血压和围产期抑郁等高危妊娠条件 | 数字健康 | 妊娠相关疾病 | 社交计算、机器学习 | 深度学习分类器 | 文本 | 55,301条社交媒体帖子,10名妊娠糖尿病/高血压信息管理孕妇,30名围产期抑郁预防孕妇 |
16220 | 2024-09-21 |
Predicting recovery following stroke: Deep learning, multimodal data and feature selection using explainable AI
2024, NeuroImage. Clinical
DOI:10.1016/j.nicl.2024.103638
PMID:39002223
|
研究论文 | 本文评估了多种基于深度学习和可解释AI的解决方案,用于预测中风后的恢复情况 | 引入了一种新的方法,即将从MRI中提取的感兴趣区域(ROIs)与表格数据的符号表示相结合,训练卷积神经网络(CNN) | 数据集相对较小,且仅限于英语使用者 | 评估多种方法以提高中风后恢复预测的准确性 | 中风幸存者的MRI和表格数据 | 机器学习 | 中风 | MRI | 卷积神经网络(CNN) | 图像和表格数据 | 758名中风幸存者 |