深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 24947 篇文献,本页显示第 16261 - 16280 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
16261 2024-09-26
Improving synthetic media generation and detection using generative adversarial networks
2024, PeerJ. Computer science
研究论文 本文提出了一种改进的生成对抗网络(GAN)模型,用于提高合成媒体生成和检测的准确性 通过数据增强和标签平滑策略改进了GAN模型的训练,提高了合成图像的生成和检测效果 NA 解决合成图像生成和检测中的问题,减少社交媒体法规违规和虚假信息传播的风险 合成图像的生成和检测 计算机视觉 NA 生成对抗网络(GAN) 深度卷积生成对抗网络(DCGAN) 图像 使用了包含人脸的数据集,包括Flickr-Faces Nvidia数据集和Fakefaces数据集
16262 2024-09-26
Enhancing intrusion detection performance using explainable ensemble deep learning
2024, PeerJ. Computer science
研究论文 提出了一种基于可解释集成深度学习的入侵检测方法,以提高网络攻击检测的准确性和可解释性 设计了一种新的集成入侵检测模型,结合了三个一维长短期记忆网络(LSTM)和一个元学习算法,并通过SHAP方法增强了结果的可解释性 NA 提高大规模网络中入侵检测系统的准确性和可解释性 网络攻击的检测和分类 机器学习 NA 长短期记忆网络(LSTM),元学习算法,SHAP LSTM 数据 真实数据集
16263 2024-09-26
Reconstructing interpretable features in computational super-resolution microscopy via regularized latent search
2024, Biological imaging
研究论文 提出了一种基于正则化潜在搜索(RLS)的计算超分辨率显微镜方法,以在保持真实性的同时重建高分辨率图像的可解释特征 引入了一种新的正则化潜在搜索方法,能够在不需要成对图像的情况下显著提高分辨率,并重建高分辨率图像的可解释特征 需要大量的低分辨率/高分辨率图像对,并且生成的合成图像分辨率提升有限 开发一种能够在保持真实性的同时重建高分辨率图像可解释特征的超分辨率方法 显微镜图像的超分辨率重建 计算机视觉 NA 生成对抗网络(GAN) 生成对抗网络(GAN) 图像 大量低分辨率/高分辨率图像对
16264 2024-09-26
Knowledge mapping of freezing of gait in Parkinson's disease: a bibliometric analysis
2024, Frontiers in neuroscience IF:3.2Q2
综述 本文对帕金森病中的冻结步态进行了文献计量分析,总结了过去二十年来的研究热点和趋势 首次对帕金森病中的冻结步态进行文献计量分析 NA 总结帕金森病中冻结步态的研究热点和趋势 帕金森病中的冻结步态 NA 帕金森病 文献计量分析 NA 文献 1340篇文章,来自64个国家/地区
16265 2024-09-26
A modified U-Net to detect real sperms in videos of human sperm cell
2024, Frontiers in artificial intelligence IF:3.0Q2
研究论文 研究探讨了在人类精子细胞视频中检测真实精子的改进U-Net模型 提出了使用UNet++与ResNet34结合的模型,在VISEM数据集上表现出色 在识别紧密相邻的精子细胞方面仍存在挑战 提高男性不育诊断中精子分割的自动化程度 人类精子细胞视频中的精子分割 计算机视觉 男性不育 深度学习 UNet++ 视频 使用了VISEM数据集中的帧
16266 2024-09-26
An experimental study of acoustic bird repellents for reducing bird encroachment in pear orchards
2024, Frontiers in plant science IF:4.1Q1
研究论文 本文设计了一种基于计算机视觉的声波鸟类驱赶系统,结合深度学习目标识别技术,用于减少梨园中的鸟类侵扰 首次将计算机视觉与声波驱鸟技术结合,通过深度学习模型识别鸟类并进行驱赶 实验规模较小,仅在两个实验区域进行测试,未来需在更大范围内验证其有效性 研究声波鸟类驱赶技术在梨园中的应用,减少鸟类对高价值作物的损害 梨园中的鸟类侵扰及其对作物产量的影响 计算机视觉 NA 深度学习目标识别技术 神经网络模型 视频 两个实验区域,使用声波驱鸟器和无驱鸟器的对照组进行对比
16267 2024-09-26
Prediction of nitrous oxide emission of a municipal wastewater treatment plant using LSTM-based deep learning models
2024-Jan, Environmental science and pollution research international
研究论文 本研究开发并评估了基于LSTM的深度学习模型,用于预测瑞士某污水处理厂的NO排放 LSTM模型在预测NO排放方面优于RNN模型,表现出更高的准确性和鲁棒性 NA 评估深度学习模型在预测污水处理厂NO排放方面的性能 瑞士某污水处理厂的NO排放 机器学习 NA 深度学习 LSTM 数值数据 涉及六个关键参数
16268 2024-09-26
Evaluating the influence of road construction on landslide susceptibility in Saudi Arabia's mountainous terrain: a Bayesian-optimised deep learning approach with attention mechanism and sensitivity analysis
2024-Jan, Environmental science and pollution research international
研究论文 研究评估了沙特阿拉伯山区道路建设对滑坡易感性的影响,采用贝叶斯优化深度学习方法结合注意力机制和敏感性分析 本研究创新性地结合了贝叶斯优化和注意力机制的深度学习模型,显著提高了滑坡预测的准确性 研究主要集中在沙特阿拉伯的Asir地区,可能限制了结果的普适性 开发高精度的深度学习模型来预测滑坡易感性,并进行全面的敏感性分析 沙特阿拉伯Asir地区的山区滑坡易感性 机器学习 NA 深度学习 CNN 图像 NA
16269 2024-09-26
Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method to automate bronchial parameter extraction
2023-Oct, European radiology IF:4.7Q1
研究论文 评估一种结合深度学习和最优表面图割方法的自动支气管参数提取方法的可重复性 结合深度学习和最优表面图割方法,自动分割气道管腔和壁,并计算支气管参数 自动测量方法在第7代及以后的气道中可重复性显著下降 评估自动支气管参数提取方法的可重复性 支气管参数的自动分割和测量 计算机视觉 NA 深度学习 深度学习模型 CT扫描图像 188名参与者,每人两次CT扫描,平均间隔3个月
16270 2024-09-26
Large-scale automatic extraction of agricultural greenhouses based on high-resolution remote sensing and deep learning technologies
2023-Oct, Environmental science and pollution research international
研究论文 本文利用高分辨率遥感图像和深度学习技术,自动提取了中国山东省的大规模农业温室分布 首次实现了大规模高分辨率(约1米)的农业温室提取,并结合深度学习算法达到了94.04%的平均交并比 研究仅限于山东省,未涵盖其他地区 获取农业温室的空间分布,为农业生产、政策制定和环境保护提供支持 中国山东省的农业温室 计算机视觉 NA 高分辨率遥感图像 深度学习算法 图像 山东省总面积的1.11%,总耕地面积的2.31%,覆盖面积为1755.3平方公里
16271 2024-09-26
Towards Universal Cell Embeddings: Integrating Single-cell RNA-seq Datasets across Species with SATURN
2023-Sep-24, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种名为SATURN的深度学习方法,用于学习跨物种的通用细胞嵌入,通过结合蛋白质语言模型和RNA表达来整合不同物种的单细胞RNA测序数据集 SATURN方法能够检测跨物种的功能相关基因共表达,重新定义了跨物种分析的差异表达,并能有效跨物种转移注释和识别同源及物种特异性细胞类型 NA 开发一种能够整合跨物种单细胞RNA测序数据集的方法,以揭示细胞类型的进化保守性和多样性 跨物种的单细胞RNA测序数据集,包括三种物种的全器官图谱以及蛙和斑马鱼胚胎发育数据集 机器学习 NA 单细胞RNA测序 深度学习 基因表达数据 涉及三种物种的全器官图谱以及蛙和斑马鱼胚胎发育数据集
16272 2024-09-26
Multimodal deep learning approaches for single-cell multi-omics data integration
2023-09-20, Briefings in bioinformatics IF:6.8Q1
review 本文综述了多模态深度学习技术在单细胞多组学数据整合中的应用 首次系统性地研究了深度学习在单细胞多组学数据整合中的应用 NA 填补深度学习在单细胞多组学数据整合应用中的研究空白 单细胞多组学数据 machine learning NA 多模态深度学习 NA multi-omics NA
16273 2024-09-26
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study
2023-09-11, Cancer cell IF:48.8Q1
研究论文 本文开发了一种基于Transformer的管道,用于从结直肠癌病理切片中进行端到端的生物标志物预测 本文提出了一种新的基于Transformer的管道,结合了预训练的Transformer编码器和Transformer网络进行补丁聚合,显著提高了性能、泛化性、数据效率和可解释性 NA 加速从常规病理切片中预测结直肠癌的预后生物标志物 结直肠癌病理切片中的生物标志物预测 数字病理学 结直肠癌 Transformer Transformer 图像 超过13,000名患者,来自16个结直肠癌队列
16274 2024-09-26
Poor Generalization by Current Deep Learning Models for Predicting Binding Affinities of Kinase Inhibitors
2023-Sep-06, bioRxiv : the preprint server for biology
研究论文 本文探讨了当前深度学习模型在预测激酶抑制剂结合亲和力方面的泛化能力 通过构建卷积神经网络(CNN)并评估其在四个常用数据集上的表现,揭示了模型在处理未见数据时的性能下降问题 模型在处理未见数据时性能显著下降,表明存在信息泄露问题,且模型未能学习到分子相互作用的知识 评估当前深度学习模型在预测激酶抑制剂结合亲和力方面的泛化能力 激酶抑制剂及其与激酶的结合亲和力 机器学习 NA 卷积神经网络(CNN) 卷积神经网络(CNN) 分子序列(SMILES字符串) 四个常用数据集
16275 2024-09-26
Foundation Models for Quantitative Biomarker Discovery in Cancer Imaging
2023-Sep-05, medRxiv : the preprint server for health sciences
研究论文 本文开发了一种用于癌症影像生物标志物发现的基石模型,并通过自监督学习训练卷积编码器 基石模型在减少下游应用中训练样本需求方面表现出色,特别是在医学领域 NA 开发和评估用于影像生物标志物发现的基石模型 癌症影像生物标志物 计算机视觉 NA 自监督学习 卷积神经网络(CNN) 影像 11,467个放射性病变样本
16276 2024-09-26
Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
2023-09, PLoS genetics IF:4.0Q1
研究论文 提出了一种基于图自编码器的深度学习模型DeepRIG,用于从单细胞转录组数据中推断基因调控网络 DeepRIG模型通过构建先验调控图并利用图自编码器嵌入全局调控信息,能够准确重建基因调控网络并优于现有方法 NA 推断单细胞转录组数据中的基因调控网络 基因调控网络 机器学习 NA 单细胞RNA测序 图自编码器 转录组数据 人类外周血单核细胞和三阴性乳腺癌样本
16277 2024-09-26
Advancing Naturalistic Affective Science with Deep Learning
2023-Sep, Affective science IF:2.1Q2
综述 本文综述了深度学习在推进自然情感科学中的应用 引入深度学习方法来解决传统情感研究中的挑战,如量化自然行为、选择和操纵自然刺激以及建模自然情感过程 深度学习方法本身存在局限性,可能需要避免或缓解 推进更自然的情感科学研究 情感行为的不同渠道,包括面部表情、身体姿势、语音韵律和语言 自然语言处理 NA 深度学习 NA 行为数据 NA
16278 2024-09-26
Trends in the application of remote sensing in blue carbon science
2023-Sep, Ecology and evolution IF:2.3Q2
研究论文 本文探讨了遥感技术在蓝碳科学中的应用趋势 本文通过文献计量分析评估了1990年至2022年6月间发表的2193篇论文,揭示了研究重点随时间的变化 需要增加对海草、盐沼和大型藻类的研究,整合技术,增加遥感技术在碳核算方法和信用体系中的应用,并加强国家间的合作和资源共享 评估蓝碳生态系统(如红树林、盐沼和海草)的现状、损失和增益,以支持气候政策制定 红树林、盐沼、海草等蓝碳生态系统 遥感 NA 遥感技术,包括光学卫星Landsat、LiDAR、无人机和声学传感器 机器学习和深度学习算法 遥感图像 2193篇已发表的论文
16279 2024-09-26
Deep learning-based model detects atrial septal defects from electrocardiography: a cross-sectional multicenter hospital-based study
2023-Sep, EClinicalMedicine IF:9.6Q1
研究论文 本文提出了一种基于卷积神经网络(CNN)的模型,用于从12导联心电图(ECG)中检测房间隔缺损(ASD),并在多中心医院进行横断面研究 本文的创新点在于利用深度学习技术,特别是卷积神经网络,从常规的12导联心电图中自动检测房间隔缺损,从而提高诊断的敏感性和特异性 本文的局限性在于样本选择可能存在偏倚,且未详细讨论模型的泛化能力在不同人群中的表现 本研究旨在通过开发和验证一种基于深度学习的模型,提高房间隔缺损的早期检测和诊断准确性 本研究的对象是从三所医院收集的671,201份12导联心电图,涉及80,947名患者 机器学习 心血管疾病 卷积神经网络(CNN) 卷积神经网络(CNN) 心电图(ECG) 671,201份心电图,涉及80,947名患者
16280 2024-09-26
Predicting Individual Patient Platelet Demand in a Large Tertiary Care Hospital Using Machine Learning
2023-Aug, Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie IF:1.9Q4
研究论文 本文研究了使用机器学习方法预测大型三级医院中单个患者的血小板需求 本文首次引入了基于AI的患者个体血小板需求预测方法 模型的敏感性表现不佳,需要进一步改进 评估多模态数据以预测患者在3天内的血小板输注需求 25,190名患者的数据,包括血小板输注数量、血小板计数、药物、急性血小板疾病、手术、年龄、性别和住院时间 机器学习 NA 机器学习 NA 多模态数据 25,190名患者(42%女性,58%男性)
回到顶部