本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16421 | 2024-09-21 |
A deep learning model for personalized intra-arterial therapy planning in unresectable hepatocellular carcinoma: a multicenter retrospective study
2024-Sep, EClinicalMedicine
IF:9.6Q1
DOI:10.1016/j.eclinm.2024.102808
PMID:39296944
|
研究论文 | 本文提出了一种基于深度学习的个性化肝动脉内治疗计划模型,用于不可切除的肝细胞癌患者 | 本文创新性地使用SELECTION模型和ATOM模型,通过生存评分来优化不可切除肝细胞癌患者的治疗选择 | 本文的局限性在于其为回顾性多中心研究,且依赖于特定的治疗方式和数据集 | 研究目的是开发一种基于人工智能的个性化治疗计划模型,以提高不可切除肝细胞癌患者的治疗效果 | 研究对象为1725名接受过预手术CECT扫描的不可切除肝细胞癌患者 | 机器学习 | 肝癌 | 深度学习 | Transformer | 图像 | 1725名患者 |
16422 | 2024-09-21 |
Deep learning model utilizing clinical data alone outperforms image-based model for hernia recurrence following abdominal wall reconstruction with long-term follow up
2024-Jul, Surgical endoscopy
DOI:10.1007/s00464-024-10980-y
PMID:38862826
|
研究论文 | 本研究探讨了利用临床数据而非影像数据构建的深度学习模型在预测腹壁重建后疝复发方面的表现 | 首次比较了仅使用临床数据和影像数据的深度学习模型在预测疝复发方面的表现,发现临床数据模型优于影像数据模型 | 所有模型在预测疝复发方面的表现均不佳,需要进一步研究以提高预测能力 | 评估深度学习模型在预测腹壁重建后疝复发方面的表现,并探讨是否结合临床数据能提高预测能力 | 腹壁重建后疝复发的预测 | 机器学习 | NA | 深度学习 | 深度学习模型 | 影像数据和临床数据 | 190名腹壁重建患者 |
16423 | 2024-09-21 |
Surgical optomics: hyperspectral imaging and deep learning towards precision intraoperative automatic tissue recognition-results from the EX-MACHYNA trial
2024-Jul, Surgical endoscopy
DOI:10.1007/s00464-024-10880-1
PMID:38789623
|
研究论文 | 本研究开发了一种基于高光谱成像(HSI)和深度学习的自动腹部组织识别系统,并在前瞻性双中心设置中使用人类数据进行了验证 | 首次将高光谱成像与机器学习结合,用于手术中的自动组织识别,并提出了“手术光组学”这一新概念 | 需要进一步研究以量化高光谱成像的临床价值 | 开发基于高光谱成像的自动腹部组织识别系统,并验证其在手术中的应用 | 腹部手术中的组织识别 | 计算机视觉 | NA | 高光谱成像(HSI) | 卷积神经网络(CNN) | 图像 | 169名患者,其中73名来自斯特拉斯堡,96名来自维罗纳 |
16424 | 2024-09-21 |
Multi-scale spatiotemporal attention network for neuron based motor imagery EEG classification
2024-06, Journal of neuroscience methods
IF:2.7Q3
DOI:10.1016/j.jneumeth.2024.110128
PMID:38554787
|
研究论文 | 本文提出了一种基于多尺度时空自注意力机制的网络模型,用于分类基于运动想象任务的脑电信号 | 该模型利用注意力机制自动分配权重,选择与运动活动相关的通道,并使用多尺度时间卷积网络层提取时间域特征信息 | NA | 开发和训练一个能够有效提取运动想象脑电数据特征的网络模型 | 基于运动想象任务的脑电信号 | 机器学习 | NA | 脑电图 (EEG) | 自注意力网络 (SA) | 脑电信号 | 使用了BCI竞赛数据集IV-2a、IV-2b和HGD,分别包含79.26%、85.90%和96.96%的准确率 |
16425 | 2024-09-21 |
A robust multi-branch multi-attention-mechanism EEGNet for motor imagery BCI decoding
2024-05, Journal of neuroscience methods
IF:2.7Q3
DOI:10.1016/j.jneumeth.2024.110108
PMID:38458260
|
研究论文 | 本文提出了一种多分支多注意力机制的EEGNet模型(MBMANet),用于运动想象脑机接口的鲁棒解码 | 本文创新性地结合了多分支和多注意力机制,使模型能够自适应地学习不同的EEG特征,从而提高了解码的鲁棒性 | NA | 研究目的是提高基于运动想象的脑机接口技术的鲁棒性和实用性 | 研究对象是运动想象脑机接口中的EEG信号解码 | 机器学习 | NA | 深度学习 | CNN | EEG信号 | 9名受试者 |
16426 | 2024-09-21 |
Scalable Surveillance of E-Cigarette Products on Instagram and TikTok Using Computer Vision
2024-04-22, Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco
IF:3.0Q2
DOI:10.1093/ntr/ntad224
PMID:37947283
|
研究论文 | 开发了一种基于计算机视觉的模型,用于在Instagram和TikTok上识别电子烟产品 | 首次使用图像为基础的计算机视觉模型来识别社交媒体中的电子烟产品 | 模型在某些对象类别上的准确性仍有提升空间 | 开发和评估一种用于社交媒体图像和视频中电子烟产品检测的计算机视觉模型 | Instagram和TikTok上的电子烟相关内容 | 计算机视觉 | NA | 深度学习 | DyHead对象检测模型 | 图像和视频 | 6999张Instagram图片和14072段TikTok视频(共10276485帧) |
16427 | 2024-09-21 |
Digital health technologies for high-risk pregnancy management: three case studies using Digilego framework
2024-Apr, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooae022
PMID:38455839
|
研究论文 | 本文介绍了利用Digilego框架开发的三种数字健康技术,用于高危妊娠管理 | 本文的创新点在于利用社交计算、数据科学和数字健康技术开发了一系列数字产品,以支持高危妊娠管理 | 本文的局限性在于初步测试的样本量较小,未来需要进一步的实施和测试 | 研究目的是开发和评估数字健康技术,以支持高危妊娠管理 | 研究对象包括妊娠糖尿病、高血压和围产期抑郁等高危妊娠条件 | 数字健康 | 妊娠相关疾病 | 社交计算、机器学习 | 深度学习分类器 | 文本 | 55,301条社交媒体帖子,10名妊娠糖尿病/高血压信息管理孕妇,30名围产期抑郁预防孕妇 |
16428 | 2024-09-21 |
Predicting recovery following stroke: Deep learning, multimodal data and feature selection using explainable AI
2024, NeuroImage. Clinical
DOI:10.1016/j.nicl.2024.103638
PMID:39002223
|
研究论文 | 本文评估了多种基于深度学习和可解释AI的解决方案,用于预测中风后的恢复情况 | 引入了一种新的方法,即将从MRI中提取的感兴趣区域(ROIs)与表格数据的符号表示相结合,训练卷积神经网络(CNN) | 数据集相对较小,且仅限于英语使用者 | 评估多种方法以提高中风后恢复预测的准确性 | 中风幸存者的MRI和表格数据 | 机器学习 | 中风 | MRI | 卷积神经网络(CNN) | 图像和表格数据 | 758名中风幸存者 |
16429 | 2024-09-21 |
Geodesic shape regression based deep learning segmentation for assessing longitudinal hippocampal atrophy in dementia progression
2024, NeuroImage. Clinical
DOI:10.1016/j.nicl.2024.103623
PMID:38821013
|
研究论文 | 本文提出了一种基于测地线形状回归的深度学习分割方法,用于评估痴呆进展中的海马体萎缩 | 本文创新性地将测地线形状回归集成到两阶段分割网络中,以增强个体内部形态一致性,从而减少纵向变异性对分割精度的影响 | NA | 旨在提高纵向MRI图像中海马体形态分割的准确性,从而更精确地评估痴呆进展中的海马体萎缩 | 海马体形态及其在痴呆进展中的萎缩情况 | 计算机视觉 | 神经退行性疾病 | 深度学习 | 3D U-Net | 图像 | 来自阿尔茨海默病神经影像学倡议(ADNI)的纵向数据 |
16430 | 2024-09-21 |
Deep Learning-based Automated Knee Joint Localization in Radiographic Images Using Faster R-CNN
2024, Current medical imaging
IF:1.1Q3
|
研究论文 | 本文提出了一种基于深度学习的自动膝关节定位方法,使用Faster R-CNN模型在放射影像中检测膝关节区域 | 本文的创新点在于利用Faster R-CNN模型实现了膝关节区域的自动检测,克服了传统方法的主观性、耗时和劳动密集的缺点 | 本文未详细讨论模型的泛化能力和在不同数据集上的表现 | 本研究的目的是开发一种更高效和自动化的膝关节分析方法,以替代传统的膝关节X光评估 | 本研究的对象是膝关节区域的放射影像 | 计算机视觉 | 骨关节炎 | Faster R-CNN | Faster R-CNN | 图像 | 使用了膝关节图像数据集进行模型训练和评估 |
16431 | 2024-09-21 |
Performance analysis of Alexnet for Classification of Knee Osteoarthritis
2024, Current medical imaging
IF:1.1Q3
|
研究论文 | 本文分析了AlexNet模型在膝关节骨性关节炎分类中的性能 | 本文首次评估了AlexNet模型在膝关节骨性关节炎分类中的性能,并与其他模型进行了比较 | 本文仅评估了AlexNet模型的性能,未探讨其他可能更优的深度学习模型 | 评估AlexNet模型在膝关节骨性关节炎分类中的性能,并与其他模型进行比较 | 膝关节骨性关节炎的分类 | 计算机视觉 | 骨关节炎 | 深度学习技术 | AlexNet | 图像 | NA |
16432 | 2024-09-21 |
Implementation and Efficient Analysis of Preprocessing Techniques in Deep Learning for Image Classification
2024, Current medical imaging
IF:1.1Q3
|
研究论文 | 本文研究了深度学习图像分类中预处理技术的实现及其有效性分析 | 本文采用MSA方法分析了图像处理应用中预处理步骤的影响,并总结了现有使用和不使用预处理步骤的深度学习图像处理模型 | 本文未详细探讨不同预处理技术对模型性能的具体影响 | 探讨预处理步骤在深度学习图像分类中的必要性 | 图像分类中的预处理技术及其对模型性能的影响 | 计算机视觉 | NA | 深度学习 | 神经网络 | 图像 | 大量数据样本 |
16433 | 2024-09-21 |
Classification of Brain Tumours in MRI Images using a Convolutional Neural Network
2024, Current medical imaging
IF:1.1Q3
|
研究论文 | 本文使用卷积神经网络(CNN)对脑部MRI图像中的肿瘤进行分类 | 提出的CNN模型在处理资源消耗较少的情况下,实现了更高的准确率和损失减少 | 实验在相对有限的样本数据集上进行 | 利用深度学习技术提高脑肿瘤MRI图像分类的准确性 | 脑部MRI图像中的肿瘤 | 计算机视觉 | 脑肿瘤 | 卷积神经网络(CNN) | CNN | 图像 | 相对有限的样本数据集 |
16434 | 2024-09-21 |
An Early Detection and Classification of Alzheimer's Disease Framework Based on ResNet-50
2024, Current medical imaging
IF:1.1Q3
|
研究论文 | 本文提出了一种基于ResNet-50的阿尔茨海默病早期检测和分类框架 | 通过使用深度残差网络(ResNet)模型和图像预处理技术,解决了传统卷积神经网络(CNN)中卷积层的局限性 | 尽管某些模型在准确性上表现更好,但它们容易过拟合 | 开发一种更有效的阿尔茨海默病早期检测系统 | 阿尔茨海默病患者 | 计算机视觉 | 阿尔茨海默病 | 深度残差网络(ResNet) | ResNet-50 | MRI扫描图像 | 阿尔茨海默病患者的MRI扫描数据集 |
16435 | 2024-09-21 |
Convex Hull Prediction for Adaptive Video Streaming by Recurrent Learning
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2024.3455989
PMID:39264770
|
研究论文 | 提出了一种基于深度学习的自适应视频流凸包预测方法,通过循环卷积网络(RCN)分析视频片段的时空复杂度来预测其凸包 | 采用循环卷积网络(RCN)和两步迁移学习方案,显著减少了预编码时间和计算开销 | 未提及具体限制 | 减少自适应视频流中预编码步骤的时间和计算开销 | 视频片段的凸包预测 | 计算机视觉 | NA | 深度学习 | 循环卷积网络(RCN) | 视频 | 未提及具体样本数量 |
16436 | 2024-09-21 |
Change Representation and Extraction in Stripes: Rethinking Unsupervised Hyperspectral Image Change Detection With an Untrained Network
2024, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2024.3438100
PMID:39269800
|
研究论文 | 提出了一种新的无监督高光谱图像变化检测方法StripeCD,通过在无训练网络中集成优化建模来表示和建模条纹变化 | 引入了一种新的特征空间表示方法,通过条纹形式表示变化特征,并提出了一种多尺度前向-后向分割框架来突出显著变化 | 依赖于无训练网络的特征波动性可能导致变化检测结果不准确 | 改进无监督高光谱图像变化检测方法,减少对标注数据的依赖 | 高光谱图像的变化检测 | 计算机视觉 | NA | 无训练卷积网络 | 卷积神经网络 | 图像 | 涉及三个广泛使用的高光谱图像数据集 |
16437 | 2024-09-21 |
Diagnostic Value of Artificial Intelligence in Minimal Breast Lesions Based on Real-Time Dynamic Ultrasound Imaging
2024, International journal of general medicine
IF:2.1Q2
DOI:10.2147/IJGM.S479969
PMID:39295853
|
研究论文 | 探讨基于实时动态超声成像系统的人工智能在诊断微小乳腺病变中的价值 | 使用基于实时动态超声成像系统的人工智能进行微小乳腺病变的诊断 | 仍存在一些漏诊和误诊的情况 | 研究人工智能在微小乳腺病变诊断中的应用价值 | 直径≤10mm的微小乳腺病变 | 计算机视觉 | 乳腺癌 | 深度学习算法 | 深度学习 | 视频 | 291例微小乳腺病变,其中228例良性,63例恶性 |
16438 | 2024-09-21 |
A general prediction model for compound-protein interactions based on deep learning
2024, Frontiers in pharmacology
IF:4.4Q1
DOI:10.3389/fphar.2024.1465890
PMID:39295942
|
研究论文 | 本文开发了一种基于深度学习的化合物-蛋白质相互作用预测模型,并验证了其在中药中的应用 | 本文提出了一个集成大规模生物活性基准数据集和深度学习算法的计算模型,用于预测化合物-蛋白质相互作用,并在中药中验证了其有效性 | 由于化合物和目标的多样性以及缺乏大规模相互作用数据集和负数据集,现有计算方法在预测准确性和泛化能力方面面临挑战 | 开发一种准确的化合物-蛋白质相互作用预测模型,以促进药物发现和理解中药的生物活性 | 化合物-蛋白质相互作用,特别是中药中的化合物 | 机器学习 | NA | 深度学习 | NA | 生物活性数据 | 使用了黄芪和白花蛇舌草这对中药组合中的活性化合物,并从多个公共数据库和文献中收集了这些化合物的完整目标数据 |
16439 | 2024-09-21 |
Analysis and comparison of retinal vascular parameters under different glucose metabolic status based on deep learning
2024, International journal of ophthalmology
IF:1.9Q2
DOI:10.18240/ijo.2024.09.02
PMID:39296560
|
研究论文 | 本文开发了一种基于深度学习的模型,用于自动分割视网膜血管,并分析和比较不同血糖代谢状态下的血管参数 | 本文首次使用深度学习模型U-Net进行视网膜血管分割,并分析了不同血糖代谢状态下的血管参数差异 | 样本量相对较小,可能影响结果的普适性 | 评估人工智能在图像分割和视网膜血管参数分析中预测糖尿病前期的潜力 | 视网膜血管参数在不同血糖代谢状态下的差异 | 计算机视觉 | 糖尿病 | 深度学习 | U-Net | 图像 | 总共600只眼睛,包括200名正常人、200名糖尿病前期患者和200名糖尿病患者 |
16440 | 2024-09-21 |
Systematic bibliometric and visualized analysis of research hotspots and trends on the application of artificial intelligence in glaucoma from 2013 to 2022
2024, International journal of ophthalmology
IF:1.9Q2
DOI:10.18240/ijo.2024.09.22
PMID:39296573
|
综述 | 对2013年至2022年间人工智能在青光眼领域的应用进行文献计量分析和可视化研究 | 通过CiteSpace和VOSviewer软件分析了不同国家、机构、作者和期刊的贡献及共现关系,揭示了该领域的研究热点和未来趋势 | 文章主要关注文献计量分析,未深入探讨具体技术细节和临床应用效果 | 全面了解人工智能在青光眼领域的研究现状,并识别未来研究的新方向 | 2013年至2022年间发表的关于人工智能在青光眼领域应用的英文文章 | 计算机视觉 | 眼科疾病 | NA | NA | 文本 | 750篇英文文章 |